Transcription profile of the Plasmodium falciparum intraerythrocytic cycle
Ontology highlight
ABSTRACT: This experiment characterizes the transcriptome of the human malaria parasite, P. falciparum at 8 different stages of the intraerythrocytic cycle
Project description:This experiment characterizes the localisation of H2A.Z, H3K9ac and H3K4me3 in the epigenome of the human malaria parasite, P. falciparum at 4 different stages of intraerythrocytic development.
Project description:This experiment characterizes the transcriptome of the human malaria parasite, P. falciparum at 8 different stages of the intraerythrocytic cycle Examination of polyA selected RNA in Plasmodium falciparum 3D7 strain at 8 different stages using RNA-seq
Project description:This experiment characterizes the localisation of H2A.Z, H3K9ac and H3K4me3 in the epigenome of the human malaria parasite, P. falciparum at 4 different stages of intraerythrocytic development. Examination of H2A.Z, H3K9ac, H3K4me3 and mono-nucleosomal input in 3D7 strain at 4 different stages and H2A in 3D7 strain at 1 stage using native ChIP-seq
Project description:Intermediate-size noncoding RNAs (is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Plasmodium falciparum, which is the most virulent malaria parasite infecting human being. By using Illumina/Solexa paired-end sequencing of an is-ncRNA-specific library, we performed a systematic identification of novel is-ncRNAs in intraerythrocytic P. falciparum, strain 3D7. A total of 1,198 novel is-ncRNA candidates, including antisense, intergenic, and intronic is-ncRNAs, were identified. Bioinformatics analyses showed that the intergenic is-ncRNAs were the least conserved among different Plasmodium species, and antisense is-ncRNAs were more conserved than their sense counterparts. Twenty-two novel snoRNAs were identified, and eight potential novel classes of P. falciparum is-ncRNAs were revealed by clustering analysis. The expression of randomly selected novel is-ncRNAs was confirmed by RT-PCR and northern blotting assays. An obvious different expressional profile of the novel is-ncRNA between the early and late intraerythrocytic developmental stages of the parasite was observed. The expression levels of the antisense RNAs correlated with those of their cis-encoded sense RNA counterparts, suggesting that these is-ncRNAs are involved in the regulation of gene expression of the parasite. In conclusion, we accomplished a deep profiling analysis of novel is-ncRNAs in P. falciparum, analysed the conservation and structural features of these novel is-ncRNAs, and revealed their differential expression patterns during the development of the parasite. These findings provide important information. One RNA sample (50-500 nt ) from the mixed intraerythrocytic stage of P. falciparum 3D7, subjected to Illumina/Solexa paired-end sequencing
Project description:In order to further our understanding of the metabolic network of the malaria parasite, Plasmodium falciparum, we carried out a concurrent transcriptomic and metabolomic study of the parasite's intraerythrocytic developmental cycle. These microarray data were generated to compare the expression levels of metabolic enzymes to the concentrations of their associated metabolites over the 48-hour life cycle.
Project description:Intermediate-size noncoding RNAs (is-ncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. However, they have not been thoroughly explored in Plasmodium falciparum, which is the most virulent malaria parasite infecting human being. By using Illumina/Solexa paired-end sequencing of an is-ncRNA-specific library, we performed a systematic identification of novel is-ncRNAs in intraerythrocytic P. falciparum, strain 3D7. A total of 1,198 novel is-ncRNA candidates, including antisense, intergenic, and intronic is-ncRNAs, were identified. Bioinformatics analyses showed that the intergenic is-ncRNAs were the least conserved among different Plasmodium species, and antisense is-ncRNAs were more conserved than their sense counterparts. Twenty-two novel snoRNAs were identified, and eight potential novel classes of P. falciparum is-ncRNAs were revealed by clustering analysis. The expression of randomly selected novel is-ncRNAs was confirmed by RT-PCR and northern blotting assays. An obvious different expressional profile of the novel is-ncRNA between the early and late intraerythrocytic developmental stages of the parasite was observed. The expression levels of the antisense RNAs correlated with those of their cis-encoded sense RNA counterparts, suggesting that these is-ncRNAs are involved in the regulation of gene expression of the parasite. In conclusion, we accomplished a deep profiling analysis of novel is-ncRNAs in P. falciparum, analysed the conservation and structural features of these novel is-ncRNAs, and revealed their differential expression patterns during the development of the parasite. These findings provide important information.
Project description:Purpose: The goals of this study are to compare parasite transcriptomes in sickle cell trait infected red blood cells during the intraerythrocytic developmental cycle (IDC) from in vitro time series and in vivo blood samples to identify new therapeutic targets in the treatment of malaria Methods: In vitro time series: Parasites were synchronized to early ring-stage parasites and sampled every three hours for 48 hours to capture every stage of the IDC, generating 16 RNA-seq libraries per replicate (128 total). In vivo blood samples: Samples were collected in an observational study of malaria in children in Kenieroba, Mali (ClinicalTrials.gov Identifier: NCT02645604). From children presenting with uncomplicated falciparum malaria, we selected all available samples from children with HbAS and matched each of these to a sample from a child with HbAA on: month of episode, parasite density, ethnic background, and, if possible, ABO blood type.
Project description:Artemisinin resistance in Plasmodium falciparum malaria has emerged in western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. Using DNA microarrays we identify key features of a transcriptional profile that are associated with the delayed parasite clearance phenotype. These include reduced expression of several basic metabolic and cellular pathways in the early stages, and increased expression of essentially all functionalities associated with protein metabolism in the later stages of P. falciparum intraerythrocytic development. This is consistent with the reduced ring stage susceptibility that characterizes artemisinin resistant P. falciparum. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of several regulatory proteins such as transcription factors of chromatin remodeling associated factors. In addition, the artemisinin resistant phenotype is strongly associated with a specific pattern of copy number variations, some of which are linked with differential expression of several regulatory proteins such as histone 4 and zinc permease. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides a set of candidate genes for further investigation.
Project description:Artemisinin resistance in Plasmodium falciparum malaria has emerged in western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. Using DNA microarrays we identify key features of a transcriptional profile that are associated with the delayed parasite clearance phenotype. These include reduced expression of several basic metabolic and cellular pathways in the early stages, and increased expression of essentially all functionalities associated with protein metabolism in the later stages of P. falciparum intraerythrocytic development. This is consistent with the reduced ring stage susceptibility that characterizes artemisinin resistant P. falciparum. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of several regulatory proteins such as transcription factors of chromatin remodeling associated factors. In addition, the artemisinin resistant phenotype is strongly associated with a specific pattern of copy number variations, some of which are linked with differential expression of several regulatory proteins such as histone 4 and zinc permease. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides a set of candidate genes for further investigation.