B3GALT6 Promotes Dormant Breast Cancer Cell Survival and Recurrence by Enabling Heparan Sulfate-Mediated FGF Signaling
Ontology highlight
ABSTRACT: Breast cancer mortality results from incurable recurrent tumors, putatively seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. We derived a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant chemotherapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identified the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for the linkage of glycosaminoglycans (GAGs) to proteins to generate proteoglycans and its germline loss-of-function causes skeletal dysplasias. We determined that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes, promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and suggest targeting of FGFR2 signaling as a novel approach to eradicate dormant RTCs, thereby preventing recurrence.
ORGANISM(S): Mus musculus
PROVIDER: GSE241252 | GEO | 2024/01/01
REPOSITORIES: GEO
ACCESS DATA