Maternal antibiotic exposure enhances neonatal ILC2 responses and aggravates allergic airway inflammation in adults [ATAC-seq]
Ontology highlight
ABSTRACT: Disruption of circadian rhythm during pregnancy produced adverse health outcomes in offspring. However, the role of maternal circadian rhythms in infants’ immunity and their susceptibility to inflammation remains poorly understood. Here we reported that disruption of circadian rhythms in pregnant mice profoundly aggravated the severity of neonatal inflammatory disorders, including necrotizing enterocolitis (NEC) and sepsis. The diminished production of maternal-derived docosahexaenoic acid (DHA) and the impaired immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in neonates played a dominant role in this process. Mechanistically, DHA enhanced the immunosuppressive function of neonatal MDSCs viaPPARγ mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieved neonatal inflammation induced by maternal rhythms disruption. These observations revealed an important role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.
ORGANISM(S): Mus musculus
PROVIDER: GSE242246 | GEO | 2023/09/08
REPOSITORIES: GEO
ACCESS DATA