Influences of chronic hypoxia and hypoxic-inducible factor 2A on mouse myoblasts
Ontology highlight
ABSTRACT: The extracellular oxygen levels play a crucial role in the control of cellular metabolism and behaviors under various physiological and pathological conditions. When mammalian cells sense insufficient oxygen levels, one of the most important responses is to stabilize hypoxic-inducible factors. While the functions of HIF-1A and acute hypoxia signaling have been extensively studied in many cell types, the impacts of HIF-2A and chronic hypoxia on skeletal muscle myoblasts have not been fully understood.
Project description:Differential expression of the oxygen sensitive hypoxia-inducible transcription factor (HIF) subunits HIF-1a and HIF-2a occurs in many tumor types, but the underlying regulatory mechanisms remain poorly understood. Here we investigate the role of mTOR complex in the regulation of HIF expression in cells cultured under hypoxic conditions. Neuroblastoma SK-N-BE(2)c cells were treated with DMSO or the mTORC complex inhibitor PP242 and cultured at hypoxia for 24, 48 or 72 hours.
Project description:HIF-1A and HIF-2A regulate both overlapping and unique target genes in response to hypoxia. In this dataset, we identify specific HIF-1A and HIF-2A target genes in glioblastoma cells. 12 samples were analysed comprising 4 experimental conditions (normoxia scr, hypoxia scr, hypoxia siHIF1, hypoxia siHIF2) in triplicate. We made pairwise comparisons between the averages of each triplicate set to normoxia scr using the Partek suite.
Project description:Differential expression of the oxygen sensitive hypoxia-inducible transcription factor (HIF) subunits HIF-1a and HIF-2a occurs in many tumor types, but the underlying regulatory mechanisms remain poorly understood. Here we investigate the role of mTOR complex in the regulation of HIF expression in cells cultured under hypoxic conditions.
Project description:HIF-1A and HIF-2A regulate both overlapping and unique target genes in response to hypoxia. In this dataset, we identify specific HIF-1A and HIF-2A target genes in glioblastoma cells.
Project description:Cells transiently adapt to hypoxia by globally decreasing protein translation. However, specific proteins needed to respond to hypoxia evade this translational repression. The mechanisms of this phenomenon remain unclear. We screened for and identified small molecules that selectively decrease HIF-2a translation in an mTOR independent manner, by enhancing the binding of Iron Regulatory Protein 1 (IRP1) to a recently reported Iron-Responsive Element (IRE) within the 5’-untranslated region (UTR) of the HIF-2a message. Knocking down the expression of IRP1 by shRNA abolished the effect of the compounds. Hypoxia de-represses HIF-2a translation by disrupting the IRP1- HIF-2a IRE interaction. Thus, this chemical genetic analysis describes a molecular mechanism by which translation of the HIF-2a message is maintained during conditions of cellular hypoxia through inhibition of IRP-1 dependent repression. It also provides the chemical tools for studying this phenomenon.
Project description:Cells transiently adapt to hypoxia by globally decreasing protein translation. However, specific proteins needed to respond to hypoxia evade this translational repression. The mechanisms of this phenomenon remain unclear. We screened for and identified small molecules that selectively decrease HIF-2a translation in an mTOR independent manner, by enhancing the binding of Iron Regulatory Protein 1 (IRP1) to a recently reported Iron-Responsive Element (IRE) within the 5â-untranslated region (UTR) of the HIF-2a message. Knocking down the expression of IRP1 by shRNA abolished the effect of the compounds. Hypoxia de-represses HIF-2a translation by disrupting the IRP1- HIF-2a IRE interaction. Thus, this chemical genetic analysis describes a molecular mechanism by which translation of the HIF-2a message is maintained during conditions of cellular hypoxia through inhibition of IRP-1 dependent repression. It also provides the chemical tools for studying this phenomenon. Experiment Overall Design: 3 replicate samples of 786-O human Clear Cell Renal Carcinoma cells untreated, mock treated with DMSO or treated with either of 4 HIF-2a inhibitor compounds identified by chemical genetic screening.
Project description:HIF-1a and HIF-2a are expressed at high levels in mesenchymal progenitors compared to more committed mesenchymal cells and hematopoietic cells. HIF-factors could therefore have a role in the regulation the biology of mesenchymal progenitors and their functions, like the non cell-autonomous maintenance of hematopoietic progenitors. We used microarrays to detail the global program of gene expression regulated by HIF-1a or HIF-2a in mesenchymal progenitors Mesenchymal progenitors were FACS-sorted and cultured in low oxygen concentration for few days. Once cells started to form CFU-F colonies, we transduced them with shRNAs targeting specifically HIF-1a or HIF-2a. Four days after transduction, cells were collected and RNA extracted for microarray analysis.
Project description:Hematopoietic stem cells (HSCs), which reside in bone marrow niches, are exposed to low levels of oxygen and follow an oxygen gradient throughout their differentiation. Hypoxia-inducible factors (HIFs) are the main factors regulating the cell response to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role of HIF-1a in the maintenance of murine HSCs, however the role of HIF-2a is still unclear. Here, we show that knockdown of HIF-2a and to a much lower extent, HIF-1a impedes the long-term repopulating ability of human CD34+ umbilical cord blood derived cells. The defects observed in hematopoietic stem and progenitor cell (HSPC) function after HIF-2a knockdown was due to an increase in the production of reactive oxygen species (ROS), which increases the endoplasmic reticulum (ER) stress in HSPCs and triggers apoptosis by the activation of the unfolded-protein-response (UPR) pathway. Importantly, HIF-2a deregulation also resulted in a significant decrease of engraftment of human acute myeloid leukemia (AML) cells. Overall, our data demonstrates a key role of HIF-2a in the maintenance of human HSPCs and in the survival of primary AML cells. 2 controls and 2 shHIF2 CD34+ cell samples sorted from mice after 6 weeks of engraftment