Project description:RNAseq was used to analyse transcriptional changes occuring in WNK1-expressing or WNK1-deficient DN3 thymocytes following injection of anti-CD3e
Project description:The appropriate development of myeloid progenitors into macrophages, the body’s professional phagocyte, is essential for organismal development, especially in mammals1. This dependence is exemplified by the observation that loss-of-function mutation in colony stimulating factor 1 receptor (CSF1R) results in multiple tissue abnormalities including osteopetrosis2. Despite this importance, little is known about the molecular and cell biological regulation of macrophage development. Here, we report the surprising finding that the chloride-sensing kinase With-no-lysine 1 (WNK1) is required for embryonic development of tissue-resident macrophages (TRMs). Myeloid-specific deletion of Wnk1 caused a dramatic loss of TRMs and subsequently disrupted organ development, induced systemic neutrophilia, and resulted in mortality between 3 and 4 weeks of age. Specifically, we observed that WNK1 absence stalled macrophage differentiation at the myeloid multipotent progenitor (MPP) stage, instead skewing MPP differentiation towards granulopoiesis. Mechanistically, the cognate CSF1R cytokine, macrophage-colony stimulating factor (M-CSF), triggers macropinocytosis in myeloid progenitors, which in turn induces phosphorylation of WNK1. Importantly, macropinocytosis by myeloid progenitors increases cytosolic chloride, which is directly sensed by WNK1. Perturbing chloride flux during macropinocytosis, inhibiting WNK1 chloride-sensing, and blocking macropinocytosis each skew progenitor differentiation from macrophage lineage to granulocyte lineage. Thus, we have uncovered a novel mechanism that links a cell biological process to a molecular circuit whereby WNK1 chloride-sensing and chloride flux act downstream of M-CSF-induced macropinocytosis by multipotent progenitors to ensure macrophage lineage fidelity.
Project description:The kinase protein WNK1 is highly expressed and phosphorylated in the testis, suggesting possible functions in regulating male fertility. Indeed, conditional pachytene-spermatocyte Wnk1 knock-out mice generated using the novel Wnt7a-Cre failed to produce functional sperm which resulted from the primary spermatogenic arrest during mid-pachynema. Global transcriptomic approaches identified ‘translation’ as one of the impacted events in Wnk1-depleted spermatocytes.
Project description:In multiple myeloma (MM), hypoxia-inducible transcription factor-1 (HIF-1) is overexpressed in the MM cells of the hypoxic bone marrow (BM) microenvironment. Herein, we explored in MM cells the in vitro and in vivo effects of persistent HIF-1 inhibition by expression of a lentivirus shRNA pool on proliferation, survival and transcriptional and pro-angiogenic profiles. Among the significantly modulated genes (326 and 361 genes in hypoxic and normoxic condition, respectively), we found that HIF-1 inhibition in the human myeloma cell line JJN3 downregulates the pro-angiogenic molecules VEGF, IL8, IL10, CCL2, CCL5, and MMP9. Interestingly, several pro-osteoclastogenic cytokines were also inhibited, such as IL-7 and CCL3/MIP-1. The effect of HIF-1 inhibition was assessed in vivo in NOD/SCID mice both in subcutaneous and intratibial models, indicating in either case a dramatic reduction of weight and volume of the tumor burden as a consequence of HIF-1 knockdown. Moreover, a significant reduction of the number of vessels per field and VEGF immunostaining were observed. Finally, in the intra-tibial experiments, HIF-1 inhibition significantly blocks JJN3-induced bone destruction. Overall, our data indicate that HIF-1 suppression in MM cells significantly blocks MM-induced angiogenesis and reduces both tumor burden and bone destruction in vivo, strongly indicating HIF-1 as an emerging therapeutic target in MM. The transcriptional profiles on JJN3 transduced with shRNA anti-HIF-1 (JJN3-anti-HIF-1), as compared to those infected with the control vector pLKO.1 (JJN3-pLKO.1), have been analyzed either in hypoxic or normoxic conditions. To perform gene expression profiles, total RNA was purified using the RNeasy Total RNA Isolation Kit (Qiagen, Valencia, CA). Preparation of biotin-labeled cRNA, hybridization to GeneChip Human Genome U133 Plus 2.0 Arrays and scanning (GeneChip¨ Scanner 3000 7G, Affymetrix Inc.) were performed according to manufacturer's protocols.
Project description:This series represents Affymetrix U133Plus2.0 data sets of JJN3 transduced with levivirus expressing non-specific scrambled shRNA or CKS1B shRNA Keywords: JJN3 CKS1B shRNA