Proteotranscriptomic decoding of the surface-endocytome in primary glioblastoma cells identifies potential target antigens in the hypoxic tumor niche
Ontology highlight
ABSTRACT: Backgroung: Antibody and cell-based immunotherapies, e.g., antibody-drug-conjugates and CAR-T cells, targeted at cell-surface proteins, currently revolutionize clinical oncology. However, target selection warrants a better understanding of the surface-endocytome and how it is modulated by the tumor microenvironment. Here, we unravel the surface-endocytome landscape and its remodeling by hypoxia in primary cultures from glioblastoma (GBM) patients that currently lack targeted therapies. Methods. We employed a comprehensive approach for global and dynamic mapping of surfaceome and endocytosed (endocytome) proteins in primary GBM cultures at normoxia or hypoxia. Selected target candidates were validated by immunofluorescence analyses in patient tumor sections, spheroids, and 2D cultures, and were finally confronted by ADC cytotoxicity studies. Results: We reveal a heterogeneous surface-endocytome profile across GBM cultures from three patients representing different transcriptional subtypes. CD44 emerged as a commonly abundant surfaceome antigen across GBM cultures, and we established a direct correlation between CD44 endocytic activity and ADC cytotoxicity. We elucidate how hypoxia profoundly reshapes the global surface-endocytome, and identify several hypoxia-induced antigens (CXADR, CD47, BSG, CD81, FXYD6), unique to or shared among GBM cultures. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and targeted mass spectometry. Conclusions: These studies provide a comperehensive map of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for target discovery. As proof-of-concept, we validate several proteins, either abundantly expressed in normoxia or induced by hypoxia, for further exploration as potential targets of immunotherapeutic approaches in GBM.
Project description:Background: Antibody and cell-based immunotherapies, e.g., antibody-drug-conjugates and CAR-T cells, targeted at cell-surface proteins, currently revolutionize clinical oncology. However, target selection warrants a better understanding of the surface-endocytome and how it is modulated by the tumor microenvironment. Here, we unravel the surface-endocytome landscape and its remodeling by hypoxia in primary cultures from glioblastoma (GBM) patients that currently lack targeted therapies. Methods. We employed a comprehensive approach for global and dynamic mapping of surfaceome and endocytosed (endocytome) proteins in primary GBM cultures at normoxia or hypoxia. Selected target candidates were validated by immunofluorescence analyses in patient tumor sections, spheroids, and 2D cultures, and were finally confronted by ADC cytotoxicity studies. Results: We reveal a heterogeneous surface-endocytome profile across GBM cultures from three patients representing different transcriptional subtypes. CD44 emerged as a commonly abundant surfaceome antigen across GBM cultures, and we established a direct correlation between CD44 endocytic activity and ADC cytotoxicity. We elucidate how hypoxia profoundly reshapes the global surface-endocytome, and identify several hypoxia-induced antigens (CXADR, CD47, BSG, CD81, FXYD6), unique to or shared among GBM cultures. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and targeted mass spectrometry. Conclusions: These studies provide a comprehensive map of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for target discovery. As a proof-of-concept, we validate several proteins, either abundantly expressed in normoxia or induced by hypoxia, for further exploration as potential targets of immunotherapeutic approaches in GBM.
Project description:Immunotherapies with antibody-drug-conjugates (ADC) and CAR-T cells, targeted at tumor surface antigens (surfaceome), currently revolutionize clinical oncology. However, target identification warrants a better understanding of the surfaceome and how it is modulated by the tumor microenvironment. Here, we decode the surfaceome and endocytome and its remodeling by hypoxic stress in glioblastoma (GBM), the most common and aggressive brain tumor in adults. We employed a comprehensive approach for global and dynamic profiling of the surfaceome and endocytosed (endocytome) proteins and their regulation by hypoxia in patient-derived GBM cultures. We found a heterogeneous surface-endocytome profile and a divergent response to hypoxia across GBM cultures. We provide a quantitative ranking of more than 600 surface resident and endocytosed proteins, and their regulation by hypoxia, serving as a resource to the cancer research community. As proof-of-concept, the established target antigen CD44 was identified as a commonly and abundantly expressed surface protein with high endocytic activity. Among hypoxia induced proteins, we reveal CXADR, CD47, CD81, BSG, and FXYD6 as potential targets of the stressed GBM niche. We could validate these findings by immunofluorescence analyses in patient tumors and by increased expression in the hypoxic core of GBM spheroids. Selected candidates were finally confronted by treatment studies, showing their high capacity for internalization and ADC delivery. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and quantitative mass spectrometry. Our findings provide a comprehensive understanding of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for exploration of targets for immunotherapeutic approaches in GBM.
Project description:Purpose:Glioblastoma (GBM) is the most common primary brain tumor in adults with poor prognosis and short medial survival after therapy. we have utilized U87-MG cell line as a human GBM cell model and human brain HEB cell line as non-neoplastic brain cell cultured in normoxia and 1% O2 hypoxia for transcriptional profiling to gain further insight into the molecular underpinnings that maintained the properties of GBM andclarify the molecular mechanism of hypoxia resistance of GBM. Methods:We have utilized U87-MG cell line as a human GBM cell model and human brain HEB cell line as non-neoplastic brain cell cultured in normoxia and 1% O2 hypoxia for transcriptional profiling. And validating the analysis results with specimens of GBM patients. Results: Firstly, the resulting data set revealed previously unknown proteins, including AKR1B1, MT2A, UBC, EEF1A1 and MTRNR2l2 in U87-MG cells, which promoted GBM characters through MAPK pathway. Meanwhile, we found that toll-like pathway was a new avenue mediating the function of inflammatory response in GBM. Furthermore, The results suggested that cytokine TGF-β1 and HIFs’ targeted genes, including HMOX1 and STC1 could be regard as hypoxic markers for GBM. Conclusion:Taken together, our study identified new potential biomarkers and illustrated the genes associated with inflammation in GBM. More importantly, the unique pattern to hypoxia implied new insight for the GBM research of hypoxia resistance and recurrence in future.
Project description:Glioblastoma (GBM) is the most common and devastating malignant brain tumor in adults. The mortality rate is very high despite different treatments. New therapeutic targets are therefore highly needed to improve patient care. Cell-surface proteins represent attractive targets due to their accessibility, their involvement in essential signaling pathways, and their dysregulated expression in cancer. Moreover, they are potential targets for CA-based immunotherapy or mRNA vaccine strategies. However, cell-surface proteins are often underrepresented in standard proteomic data sets, due to their poor solubility and lower expression levels compared to intracellular proteins. In this context, we investigated GBM-associated surfaceome by comparison to healthy astrocytes surfaceome to identify new specific targets to GBM. For this purpose, biotinylation of cell surface proteins has been carried out in GBM and healthy astrocytes cell lines. Biotinylated proteins were purified on streptavidin beads and analyzed by shotgun proteomics. After filtering our data with Cell Surface Proteins Atlas (CSPA) and Gene Ontology, 78 overexpressed or exclusive in GBM have been identified. Validation has been performed using Human Protein Atlas. In this context, we identified 21 specific potential targets for GBM including 5 mutated proteins (RELL1, CYBA, EGFR, and MHC I proteins). Taken together, we identified potential targets for immune therapy strategies in GBM.
Project description:SUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM. SIGNIFICANCE In this study, we show plasticity between the proneural (PN) and mesenchymal (MES) transcriptome signatures observed in glioblastoma (GBM). Specifically, we show that PN glioma sphere cultures (GSCs) can be induced to a MES state with an associated enrichment of CD44 expressing cells and a gain of radio-resistance, which we implicate as NFkB- dependent. Newly diagnosed GBM samples show a direct correlation between radiation response, higher MES metagene, CD44 expression, and NFkB activation. This correlation is also observed in the subset of GBM samples that do not exhibit IDH1 mutation, a favorable prognostic marker. Our results uncover a previously unknown link between subtype plasticity that is regulated by NFkB. Inhibition of NFkB activation can directly impact radio-resistance and presents an attractive therapeutic target for GBM. 4 treatments
Project description:SUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM. SIGNIFICANCE In this study, we show plasticity between the proneural (PN) and mesenchymal (MES) transcriptome signatures observed in glioblastoma (GBM). Specifically, we show that PN glioma sphere cultures (GSCs) can be induced to a MES state with an associated enrichment of CD44 expressing cells and a gain of radio-resistance, which we implicate as NFkB- dependent. Newly diagnosed GBM samples show a direct correlation between radiation response, higher MES metagene, CD44 expression, and NFkB activation. This correlation is also observed in the subset of GBM samples that do not exhibit IDH1 mutation, a favorable prognostic marker. Our results uncover a previously unknown link between subtype plasticity that is regulated by NFkB. Inhibition of NFkB activation can directly impact radio-resistance and presents an attractive therapeutic target for GBM. Gene expression data for 17 isolated Glioma Stem Cells
Project description:SUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM. SIGNIFICANCE In this study, we show plasticity between the proneural (PN) and mesenchymal (MES) transcriptome signatures observed in glioblastoma (GBM). Specifically, we show that PN glioma sphere cultures (GSCs) can be induced to a MES state with an associated enrichment of CD44 expressing cells and a gain of radio-resistance, which we implicate as NFkB- dependent. Newly diagnosed GBM samples show a direct correlation between radiation response, higher MES metagene, CD44 expression, and NFkB activation. This correlation is also observed in the subset of GBM samples that do not exhibit IDH1 mutation, a favorable prognostic marker. Our results uncover a previously unknown link between subtype plasticity that is regulated by NFkB. Inhibition of NFkB activation can directly impact radio-resistance and presents an attractive therapeutic target for GBM.
Project description:SUMMARY Despite numerous genome-wide association studies involving glioblastoma (GBM), few therapeutic targets have been identified for this disease. Using patient derived glioma sphere cultures (GSCs), we have found that a subset of the proneural (PN) GSCs undergo transition to a mesenchymal (MES) state in a TNFa/NFkB dependent manner with an associated enrichment of CD44 sub-populations and radio-resistant phenotypes. To the contrary, MES GSCs exhibit constitutive NFkB activation, CD44 enrichment and radio-resistance. Patients whose tumors exhibit a higher MES metagene, increased expression of CD44, or activated NFkB were associated with poor radiation response and shorter survival. Our results indicate that NFkB activation mediated MES differentiation and radiation resistance presents an attractive therapeutic target for GBM. SIGNIFICANCE In this study, we show plasticity between the proneural (PN) and mesenchymal (MES) transcriptome signatures observed in glioblastoma (GBM). Specifically, we show that PN glioma sphere cultures (GSCs) can be induced to a MES state with an associated enrichment of CD44 expressing cells and a gain of radio-resistance, which we implicate as NFkB- dependent. Newly diagnosed GBM samples show a direct correlation between radiation response, higher MES metagene, CD44 expression, and NFkB activation. This correlation is also observed in the subset of GBM samples that do not exhibit IDH1 mutation, a favorable prognostic marker. Our results uncover a previously unknown link between subtype plasticity that is regulated by NFkB. Inhibition of NFkB activation can directly impact radio-resistance and presents an attractive therapeutic target for GBM.
Project description:To study the differences in gene expression between PDAC organoids grown either as monocultures or co-cultures with panctreatic stellate cells in normoxia and hypoxia.
Project description:Surface proteins are of fundamental importance for formation of synaptic connections and activity-dependent plasticity. Here, we used a spatiotemporally resolved cell-surface proteotype analysis to characterize the neuronal surface-exposed proteome, or surfaceome, during neuronal development and synapse formation in primary neuronal cultures. We established a map of the neuronal surfaceome, which includes about 1,000 surface proteins, and analyzed the dynamic remodeling of the quantitative surfaceome during development. We identified time-resolved surface-abundance profile clusters that correspond to distinct stages of neuronal development. We discovered that surface abundance changes can correlate with or be uncoupled from the total cellular abundance. Finally, we observed system-wide surfaceome modulation in response to homeostatic synaptic scaling and exocytosis of diverse cargo during long-term potentiation.