Project description:Transcriptional profiling of adult zebrafish cornea against epidermis as a reference. Four biological repeats with dye swap (2 chips of 4x44k for 8 data sets).
Project description:Transcriptional profiling of adult zebrafish cornea against dermis as a reference. Three biological repeats with dye swap (6 chips of 1x22k for 6 data sets).
Project description:The gene expression profile of the adult zebrafish cornea was assessed in comparison to those from closely associated surface tissues: the dermis and epidermis. This SuperSeries is composed of the SubSeries listed below.
Project description:The gene expression profile of the adult zebrafish cornea was assessed in comparison to those from closely associated surface tissues: the dermis and epidermis. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:The cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.
Project description:The cornea continues to mature after birth to develop a fully functional, refractive and protective barrier tissue. Here we investigated the complex biological events underlying this process by profiling global genome-wide gene expression patterns of the immature postnatal day 10 and seven week-old adult mouse cornea. The lens and tendon were included in the study to increase the specificity of genes identified as up regulated in the corneal samples. Notable similarities in gene expression between the cornea and the tendon were in the mesenchymal extracellular matrix collagen (types I, III, V, VI) and proteoglycan (lumican, decorin and biglycan) genes. Expression similarities in the cornea and lens were limited to certain epithelial genes and the crystallins. Approximately 76 genes were over expressed in the cornea samples that showed basal expression levels in the lens and tendon. Thirty-two of these were novel with no known functions in the cornea. These include genes with a potential role in protection against oxidative stress (Dhcr24, Cdo1, Akr1b7, Prdx6), inflammation (Ltb4dh, Wdr1), ion-transport (Pdzk1ip1, Slc12a2, Slc25a17) and transcription (Zfp36l3, Pdzk1ip1). Direct comparison of the cornea of two ages showed selective up regulation of 50 and 12 genes in the P10 and adult cornea, respectively. Of the up regulated P10 genes several encode extracellular matrix collagens and proteoglycans that are stable components of the adult cornea and their high transcriptional activity at P10 indicate a period of active corneal growth and matrix deposition in the young cornea. Much less is known about the genes selectively over expressed in the adult cornea; some relate to immune response and innervations (Npy), and possibly to electron transport (Cyp24a1, Cyp2f2) and others of yet unknown functions in the cornea (Rgs10, Psmb8, Xlr4)). This study detected expression of genes with known functions in the cornea, providing additional validation of the microarray experiments. Importantly, it identified several novel genes whose functions have not been investigated in the cornea.
Project description:While the mouse cornea has been well characterized morphologically, the transcriptional changes have not been described in detail. To characterize the genes, pathways, and transcriptional regulators involved in mouse cornea development and aging, we isolated whole cornea from wildtype CB6 mice at several developmental timepoints and every 6 months in the adult. Corneal epithelium and stroma were isolated at one timepoint to provide insights into the genes that are unique to each tissue.