Project description:Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the transcriptome data, little difference was observed between the biofilm cells of B. cereus ATCC 14579 and ATCC 10987. Different responses between biofilm and planktonic cells could be identified using transcriptome analysis. Biofilm formation seemed to cause a shift in metabolism with up- or down-regulation of genes involved in different metabolic pathways. Genes involved in motility were down-regulated. No clear up-regulation related to capsular or extracellular polysaccharides was observed. Sporulation was observed in biofilm cells using microscopy, which was corroborated with up-regulation of genes involved in sporulation in biofilm cells. The results obtained in this study provide insight in general and strain specific behavior of B. cereus cells in multicellular communities.
Project description:Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the transcriptome data, little difference was observed between the biofilm cells of B. cereus ATCC 14579 and ATCC 10987. Different responses between biofilm and planktonic cells could be identified using transcriptome analysis. Biofilm formation seemed to cause a shift in metabolism with up- or down-regulation of genes involved in different metabolic pathways. Genes involved in motility were down-regulated. No clear up-regulation related to capsular or extracellular polysaccharides was observed. Sporulation was observed in biofilm cells using microscopy, which was corroborated with up-regulation of genes involved in sporulation in biofilm cells. The results obtained in this study provide insight in general and strain specific behavior of B. cereus cells in multicellular communities.
Project description:This SuperSeries is composed of the following subset Series: GSE13711: Comparative transcriptome and phenotype analysis of acid-stressed Bacillus cereus strain ATCC 14579 GSE13729: Comparative transcriptome and phenotype analysis of acid-stressed Bacillus cereus strain ATCC 10987 Refer to individual Series