LncRNA/mRNA expression profiling for diabetic and reversal rat retina samples
Ontology highlight
ABSTRACT: We employed LncRNA/mRNA expression profiling as a discovery platform identify aberrantly expressed LncRNAs that fail to reverse back after hyperglycemia is terminated. Using rat model of diabetic retinopathy- metabolic memory, LncRNA array was performed in the retina of rats diabetic for eight months, or in poor glycemic control for four months followed by good glycemic control for four additional months. Expression of selected LncRNAs and their associated genes from these profiles were confirmed by quantitative real-time PCR.
Project description:Mouse models of type I diabetes offer the potential to combine genetic approaches with other pharmacological or physiological manipulations to investigate the pathophysiology and treatment of diabetic retinopathy. Type I diabetes is induced in mice through chemical toxins or may arise spontaneously from genetic mutations. Both models are associated with retinal vascular and neuronal changes. Retinal transcriptomic responses in C57BL/6J mice treated with strepotozotocin and Ins2Akita were compared after 3 months of hyperglycemia. Specific gene expression changes suggest a neurovascular inflammatory response in diabetic retinopathy. Genes common to the two models may represent the response of the retina to hyperglycemia; while changes unique to each model may represent time-dependent disease progression differences in the various models. Further investigation of the commonalities and differences between mouse models of type I diabetes may define cause and effect events in early diabetic retinopathy disease progression.
Project description:Long noncoding RNA (lncRNA) in plasma exosomes is a potential non-invasive diagnostic biomarker for diabetic retinopathy (DR). However, the changes in plasma exosomal lncRNAs and diagnostic relevance in patients with DR patients remain unclear. A case–control study with type 2 diabetes mellitus (T2DM) and patients with comorbid DR were enrolled, and their clinical information and blood samples were collected.
Project description:Purpose. Patients with diabetic retinopathy may experience severe vision loss due to macular edema and neovascularization secondary to vascular abnormalities. However, before these abnormalities become apparent, there are functional deficits in contrast sensitivity, color perception, and dark adaptation. The goals of this study are to evaluate early changes (up to 3 months) in retinal gene expression, selected visual cycle proteins, and optokinetic tracking (OKT) in streptozotocin (STZ)-induced diabetic rats.Methods. Retinal gene expression in diabetic Long Evans rats was measured by whole genome microarray 7 days, 4 weeks, and three months after onset of hyperglycemia. Select gene and protein changes were probed by PCR and immunohistochemistry respectively, and OKT thresholds were measured using a virtual optokinetics system. Results. Microarray analysis showed that the most consistently affected molecular and cellular functions were cell-to-cell signaling and interaction, cell death, cellular growth and proliferation, molecular transport, and cellular movement. Further analysis revealed reduced expression of several genes encoding visual cycle proteins including lecithin:retinol acyltransferase (LRAT), retinal pigment epithelium (RPE)-specific protein 65kDa (RPE65) and RPE retinal G protein coupled receptor (RGR). Immunohistochemistry revealed a decrease in RPE65 in the RPE layer of diabetic rats. These molecular changes occurred simultaneously with a decrease in OKT thresholds by 4 weeks of diabetes. Conclusions. The data presented here are further evidence that inner retinal cells are affected by hyperglycemia prior to vasculopathy suggesting that glial and neuronal dysfunction may underlie some of the early visual deficits in diabetics. At each of the three timepoints (day 7, day 28, and day 84) one retina each from three diabetic rats were pooled for analysis on a single microarray chip. Three independent experiments were conducted for each group (n=9 animals/group). Each timepoint contained a hyperglycemic (STZ) and a control (buffer injection only) group. Additionally, on day 7 gene changes in the retina of rats which received a single injection of STZ, but did not develop hyperglycemia (STZ-non-c) were analyzed.
Project description:Impaired wound healing is one of the main reasons that leads to diabetic foot ulcerations. However, the exact mechanism of delayed wound healing in diabetes mellitus is not fully understood. Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes and diseases, including diabetes and its associated complications. To further identify the roles of LncRNAs in diabetic wound healing, four STZ induced diabetic rat skin tissues and four control rat skin tissues were prepared for a LncRNAs microarray expression profiling by using rat LncRNA Array (4 x 44K, Arraystar).
Project description:Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intra-cardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalizes components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalizes insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescues cardiac lusitropy, improves exercise intolerance, and ameliorates hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy, and also improve systemic glycemic control.
Project description:Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcrips with elusive functions in metabolism. Here we report that an unexpectedly high fraction of lncRNAs, but not protein-coding mRNAs, is repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation specifically induced lncRNAs in mouse liver. Similarly, lncRNAs were lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirmed that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in primary hepatocytes and in vivo elicited a fasting-like expression profile, improved glucose metabolism, derepressed lncRNAs and prevented mammalian target of rapamycin (mTOR)-driven protein translation. We found that obesity-repressed lincIRS2 is controlled by MAFG and observed that genetic and RNAi-mediated lincIRS2 loss causes hyperglycemia, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a novel MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
Project description:Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcrips with elusive functions in metabolism. Here we report that an unexpectedly high fraction of lncRNAs, but not protein-coding mRNAs, is repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation specifically induced lncRNAs in mouse liver. Similarly, lncRNAs were lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirmed that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in primary hepatocytes and in vivo elicited a fasting-like expression profile, improved glucose metabolism, derepressed lncRNAs and prevented mammalian target of rapamycin (mTOR)-driven protein translation. We found that obesity-repressed lincIRS2 is controlled by MAFG and observed that genetic and RNAi-mediated lincIRS2 loss causes hyperglycemia, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a novel MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
Project description:Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcrips with elusive functions in metabolism. Here we report that an unexpectedly high fraction of lncRNAs, but not protein-coding mRNAs, is repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation specifically induced lncRNAs in mouse liver. Similarly, lncRNAs were lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirmed that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in primary hepatocytes and in vivo elicited a fasting-like expression profile, improved glucose metabolism, derepressed lncRNAs and prevented mammalian target of rapamycin (mTOR)-driven protein translation. We found that obesity-repressed lincIRS2 is controlled by MAFG and observed that genetic and RNAi-mediated lincIRS2 loss causes hyperglycemia, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a novel MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
Project description:Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcrips with elusive functions in metabolism. Here we report that an unexpectedly high fraction of lncRNAs, but not protein-coding mRNAs, is repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation specifically induced lncRNAs in mouse liver. Similarly, lncRNAs were lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirmed that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in primary hepatocytes and in vivo elicited a fasting-like expression profile, improved glucose metabolism, derepressed lncRNAs and prevented mammalian target of rapamycin (mTOR)-driven protein translation. We found that obesity-repressed lincIRS2 is controlled by MAFG and observed that genetic and RNAi-mediated lincIRS2 loss causes hyperglycemia, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a novel MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
Project description:Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcrips with elusive functions in metabolism. Here we report that an unexpectedly high fraction of lncRNAs, but not protein-coding mRNAs, is repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation specifically induced lncRNAs in mouse liver. Similarly, lncRNAs were lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirmed that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in primary hepatocytes and in vivo elicited a fasting-like expression profile, improved glucose metabolism, derepressed lncRNAs and prevented mammalian target of rapamycin (mTOR)-driven protein translation. We found that obesity-repressed lincIRS2 is controlled by MAFG and observed that genetic and RNAi-mediated lincIRS2 loss causes hyperglycemia, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a novel MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.