NAT10-mediated mRNA N4-acetylcytidine is Essential for the Translational Regulation of Oocyte Meiotic Maturation in Mice
Ontology highlight
ABSTRACT: Mammalian oocyte maturation is driven by strictly translational regulation of maternal mRNAs stored in the cytoplasm. However, the function and mechanism of post-transcriptional chemical modifications especially the newly identified N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) in this process are previously unknown. In this study, we developed a low-input ac4C sequencing technology - ac4C LACE-seq and mapped 8241 ac4C peaks at the whole transcriptome level using 50 mouse oocytes at the germinal vesicle (GV) stage. We profiled the mRNA landscapes of NAT10-interactions and ac4C modifications. The NAT10-interacted and ac4C modified transcripts displayed association with high translation efficiency in oocytes. Oocyte-specific Nat10 knockout wiped out ac4C signals in oocytes and caused severe defects in meiotic maturation and female infertility. ac4C LACE-seq results indicated that Nat10 deletion led to a failure of ac4C deposition on mRNAs encoding key maternal factors such as MAY2, ZAR1, BTG4 and cyclin B1 that regulate transcriptome stability and maternal-to-zygotic transition. Nat10-deleted oocytes had decreased mRNA translation efficiencies during meiotic maturation, partially due to the direct inhibition ac4C sites on specific transcripts. In sum, we developed low-input, high-sensitivity mRNA ac4C profiling approach and highlighted the important physiological function of ac4C in precise regulation of the oocyte meiotic maturation by enhancing translation efficiency.
ORGANISM(S): Mus musculus
PROVIDER: GSE253976 | GEO | 2024/08/26
REPOSITORIES: GEO
ACCESS DATA