Other

Dataset Information

0

A spatiotemporal molecular atlas of mouse spinal cord injury identifies a distinct astrocyte subpopulation and therapeutic potential of IGFBP2


ABSTRACT: Spinal cord injury (SCI) triggers a cascade of intricate molecular and cellular changes that determine the outcome. In this study, we resolve the spatiotemporal organization of the injured mouse spinal cord and quantitatively assess in situ cell-cell communication following SCI. By analyzing existing single-cell RNA-sequencing datasets alongside our spatial data, we delineate a subpopulation of Igfbp2-expressing astrocytes that migrate from the white matter (WM) to grey matter (GM) and become reactive upon SCI, termed as Astro-GMii. Further, Igfbp2 upregulation promotes astrocyte migration, proliferation and reactivity, and the secreted IGFBP2 protein fosters neurite outgrowth. Finally, we show that IGFBP2 significantly reduces neuronal loss and remarkably improves the functional recovery in a mouse model of SCI in vivo. Together, this study not only provides a comprehensive molecular atlas of SCI but also exemplifies how the rich resource can be applied to endow cells and genes with functional insight and therapeutic potential.

ORGANISM(S): Mus musculus

PROVIDER: GSE256397 | GEO | 2024/06/19

REPOSITORIES: GEO

Similar Datasets

2023-07-20 | PXD040516 | Pride
2022-05-26 | GSE199481 | GEO
2022-05-15 | GSE81792 | GEO
2022-05-26 | GSE199149 | GEO
2023-01-24 | MSV000091130 | MassIVE
2007-10-08 | E-GEOD-2270 | biostudies-arrayexpress
2007-09-04 | E-GEOD-464 | biostudies-arrayexpress
2005-02-11 | GSE2270 | GEO
2024-01-09 | GSE247844 | GEO
2003-07-16 | GSE464 | GEO