The effect of antibiotic treatment on the intestinal metabolome
Ontology highlight
ABSTRACT: The importance of the mammalian intestinal microbiota to human health has been intensely studied over the past few years. It is now clear that the interactions between human hosts and their associated microbial communities need to be characterized in molecular detail if we are to truly understand human physiology. Additionally, the study of such host-microbe interactions is likely to provide us with new strategies to manipulate such complex systems to maintain or restore homeostasis in order to prevent or cure pathological states. We describe the use of high-throughput metabolomics to shed light on the interactions between the intestinal microbiota and the host. We show that treatment with the antibiotic streptomycin disrupts intestinal homeostasis and has a profound impact on the intestinal metabolome, affecting the levels of over 87% of all metabolites detected. Many metabolic pathways that are critical for host physiology were affected, including bile acid, eicosanoid and steroid hormone synthesis. Interestingly, many of these pathways are also affected by intestinal pathogens. Dissecting the effect of both beneficial and pathogenic bacteria on some of these pathways will be instrumental in understanding the interplay between the host, the resident microbiota and incoming pathogens and may aid in the design of new therapeutic strategies that target these interactions.
ORGANISM(S): Mus musculus
PROVIDER: GSE25687 | GEO | 2011/02/08
SECONDARY ACCESSION(S): PRJNA135837
REPOSITORIES: GEO
ACCESS DATA