Transcriptomics

Dataset Information

0

Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis


ABSTRACT: A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARg and C/EBPa. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondria were the most altered transcriptional signature in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARg. Moreover, inhibition of FAO restored PPARg expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.

ORGANISM(S): Mus musculus

PROVIDER: GSE265830 | GEO | 2024/04/29

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA1104286 | ENA
2019-02-09 | E-MTAB-7621 | biostudies-arrayexpress
2024-10-26 | GSE186613 | GEO
2020-03-24 | GSE124877 | GEO
2018-03-07 | GSE109940 | GEO
2018-09-12 | E-MTAB-6595 | biostudies-arrayexpress
2024-03-05 | GSE254000 | GEO
2020-07-22 | GSE134676 | GEO
2022-04-10 | GSE200252 | GEO
2014-05-23 | E-GEOD-40789 | biostudies-arrayexpress