Project description:This SuperSeries is composed of the following subset Series: GSE26695: Transcriptomic response of murine liver to severe injury and hemorrhagic shock: Affymetrix portion of dual platform GSE26696: Transcriptomic response of murine liver to severe injury and hemorrhagic shock: CodeLink portion of dual platform Refer to individual Series
Project description:Trauma-hemorrhagic shock (HS/T) is a complex process that elicits numerous molecular pathways. We hypothesized that a dual-platform microarray analysis of the liver, an organ that integrates immunology and metabolism, would reveal key pathways engaged following HS/T. C57BL/6 mice were divided into five groups (n = 4/group), anesthetized, and surgically treated to simulate a time course and trauma severity model: 1) nonmanipulated animals, 2) minor trauma, 3) 1.5 h of hemorrhagic shock and severe trauma (HS/T), 4) 1.5 h HS/T followed by 1 h resuscitation (HS/T+1.0R), 5) 1.5 h HS/T followed by 4.5 h resuscitation (HS/T+4.5R). Liver RNA was hybridized to CodeLink and Affymetrix mouse whole genome microarray chips. Common genes with a cross-platform correlation >0.6 (2,353 genes in total) were clustered using k-means clustering, and clusters were analyzed using Ingenuity Pathways Analysis. Genes involved in the stress response and immunoregulation were upregulated early and remained upregulated throughout the course of the experiment. Genes involved in cell death and inflammatory pathways were upregulated in a linear fashion with elapsed time and in severe injury compared with minor trauma. Three of the six clusters contained genes involved in metabolic function; these were downregulated with elapsed time. Transcripts involved in amino acid metabolism as well as signaling pathways associated with glucocorticoid receptors, IL-6, IL-10, and the acute phase response were elevated in a severity-dependent manner. This is the first study to examine the postinjury response using dual-platform microarray analysis, revealing responses that may enable novel therapies or diagnostics.
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock Mice were divided into five groups, anesthetized and surgically treated to simulate a time course and trauma severity model: non-manipulated animals (C), minor trauma (MT), 1.5 hour of hemorrhagic shock and severe trauma (HS/T), 1.5 hour HS/T followed by 1 hour resuscitation (HS/T+1.0R), 1.5 hour HS/T followed by 4.5 hours resuscitation (HS/T+4.5R)
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock Mice were divided into five groups, anesthetized and surgically treated to simulate a time course and trauma severity model: non-manipulated animals (C), minor trauma (MT), 1.5 hour of hemorrhagic shock and severe trauma (HS/T), 1.5 hour HS/T followed by 1 hour resuscitation (HS/T+1.0R), 1.5 hour HS/T followed by 4.5 hours resuscitation (HS/T+4.5R)
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock
Project description:Hemorrhagic shock is a leading cause of trauma-related mortality in both civilian and military settings. Resuscitation often results in reperfusion injury and survivors are susceptible to developing multiple organ failure (MOF). The impact of fed state on the overall response to shock and resuscitation has been explored in some murine models but few clinically relevant large animal models. We have previously used metabolomics to establish that the fed state results in a different metabolic response in the porcine liver following hemorrhagic shock and resuscitation. In this study, we used our clinically relevant model of hemorrhagic shock and polytrauma and the Illumina HiSeq platform to determine if the liver transcriptomic response is also altered with respect to fed state. Functional analysis of the response to shock and resuscitation confirmed several typical responses including carbohydrate metabolism, cytokine inflammation, decreased cholesterol synthesis, and apoptosis. Our findings also suggest that the fasting state, relative to a carbohydrate prefed state, displays decreased carbohydrate metabolism, increased cytoskeleton reorganization and decreased inflammation in response to hemorrhagic shock and reperfusion. Evidence suggests that this is a consequence of a shrunken, catabolic state of the liver cells which provides an anti-inflammatory condition that partially mitigates hepatocellar damage.
Project description:Hemorrhagic shock (HS) is a life-threatening condition associated with tissue hypoperfusion and often leads to injury of multiple organs including the liver. Pregnane X receptor (PXR) is a species-specific xenobiotic receptor that regulates the expression of drug-metabolizing enzymes (DMEs) such as the cytochrome P450 (CYP) 3A. Many clinical drugs, including those often prescribed to trauma patients, are known to activate PXR and induce CYP3A. The goal of this study is to determine whether PXR plays a role in the regulation of DMEs in the setting of HS and whether activation of PXR is beneficial or detrimental to HS-induced hepatic injury. PXR transgenic, knockout, and humanized mice were subject to HS, and the liver injury was assessed histologically and biochemically. The expression and/or activity of PXR and CYP3A were manipulated genetically or pharmacologically in order to determine their effects on HS-induced liver injury. Our results showed that genetic or pharmacological activation of PXR sensitized wild-type and hPXR/CYP3A4 humanized mice to HS-induced hepatic injury, whereas knockout of PXR protected mice from HS-induced liver injury. Mechanistically, the sensitizing effect of PXR activation was accounted for by PXR-responsive induction of CYP3A and increased oxidative stress in the liver. The sensitizing effect of PXR was attenuated by ablation or pharmacological inhibition of CYP3A, treatment with the antioxidant N-acetylcysteine amide, or treatment with a PXR antagonist. Conclusion: We have uncovered a function of PXR in HS-induced hepatic injury. Our results suggest that the unavoidable use of PXR-activating drugs in trauma patients has the potential to exacerbate HS-induced hepatic injury, which can be mitigated by the coadministration of antioxidative agents, CYP3A inhibitors, or PXR antagonists.
Project description:The effect of sex on posttraumatic pathophysiology and outcomes after severe traumatic injury remains debated. We sought to determine the relationship of sex to the genomic and inflammatory responses, and clinical outcomes after hemorrhagic shock.We analyzed blunt trauma patients in hemorrhagic shock from a prospective multi-institutional cohort study to assess for sex-based differences in the genomic response and clinical outcomes. Serially drawn blood samples were analyzed to evaluate peripheral leukocyte genomewide expression and circulating inflammatory mediators at intervals between 0.5 and 28 days after injury. Multivariate logistic regression models were developed to assess the effect of sex on outcomes after controlling for age, injury and shock severity, blood transfusion, and comorbidities.The cohort consisted of 1,285 (67%) male and 643 (33%) female blunt trauma patients. Injury and shock severity were similar between the two groups. There were small but statistically significant differences between males and females regarding their age, body mass index, and 12-hour blood and crystalloid administration. Organ failure was more severe in males, with slower recovery (9.0 vs. 6.5 days) in males compared to females (p < 0.01). However, there were no differences between males and females in plasma levels of IL-6, IL-8, IL-10, IL-1?, tumor necrosis factor alpha, and monocyte chemoattractant protein 1. Multivariate analysis revealed that sex was not a significant independent risk factor for complicated recovery or 28-day mortality. Transcriptomic analysis revealed 333 genes with significant differential expression patterns between males and females (FDR, <0.001), including genes associated with general inflammation, innate immunity, cell adhesion, and cell signaling. None of the former genes were directly associated with sex hormones or X/Y chromosomes.There are sex-specific differences in the leukocyte genomic response to severe injury that are associated with more robust and longer-duration organ dysfunction. However, these expression patterns do not seem to be associated with sex-linked genes or circulating cytokine level differences, and do not translate to worsened sex-specific organ failure outcomes or inpatient mortality.Prognostic/epidemiologic study, level III.
Project description:Despite recovery of hemodynamics by fluid resuscitation after hemorrhage, development of the systemic inflammatory response and multiple organ dysfunction syndromes can nonetheless lead to death. Minocycline and doxycycline are tetracycline derivatives that are protective in models of hypoxic, ischemic, and oxidative stress. Our aim was to determine whether minocycline and doxycycline protect liver and kidney and improve survival in a mouse model of hemorrhagic shock and resuscitation.Mice were hemorrhaged to 30 mmHg for 3 h and then resuscitated with shed blood followed by half the shed volume of lactated Ringer's solution containing tetracycline (10 mg/kg), minocycline (10 mg/kg), doxycycline (5 mg/kg), or vehicle. For pretreatment plus posttreatment, drugs were administered intraperitoneally prior to hemorrhage followed by second equal dose in Ringer's solution after blood resuscitation. Blood and tissue were harvested after 6 h.Serum alanine aminotransferase (ALT) increased to 1,988 and 1,878 U/L after posttreatment with vehicle and tetracycline, respectively, whereas minocycline and doxycycline posttreatment decreased ALT to 857 and 863 U/L. Pretreatment plus posttreatment with minocycline and doxycycline also decreased ALT to 849 and 834 U/L. After vehicle, blood creatinine increased to 134 µM, which minocycline and doxycycline posttreatment decreased to 59 and 56 µM. Minocycline and doxycycline pretreatment plus posttreatment decreased creatinine similarly. Minocycline and doxycycline also decreased necrosis and apoptosis in liver and apoptosis in both liver and kidney, the latter assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) and caspase 3 activation. Lastly after 4.5 h of hemorrhage followed by resuscitation, minocycline and doxycycline (but not tetracycline) posttreatment improved 1-week survival from 38% (vehicle) to 69% and 67%, respectively.Minocycline and doxycycline were similarly protective when given before as after blood resuscitation and might therefore have clinical efficacy to mitigate liver and kidney injury after resuscitated hemorrhage.