Dimethyl Fumarate Mediates Sustained VSMC Remodeling in a Mouse Model of Cerebral Aneurysm
Ontology highlight
ABSTRACT: Cerebral aneurysms (CA) are a type of vascular disease that causes significant morbidity and mortality with rupture. Dysfunction of the vascular smooth muscle cells (VSMCs) from circle of Willis (CoW) vessels mediates CA formation as they are the major cell type of the arterial wall and play a role in maintaining vessel integrity. Dimethyl fumarate (DMF), a first-line oral treatment for relapsing-remitting multiple sclerosis, has been shown to inhibit VSMC proliferation and reduce CA formation in a mouse model. Potential unwanted side effects of DMF on VSMC function have not been investigated yet. The present study characterizes the impact of DMF on VSMC using scRNA-seq in CoW vessels following CA induction and further explores its role in mitochondrial function using in vitro VSMC cultures. Two weeks of DMF treatment following CA induction impaired the transcription of the glutathione redox system and downregulated mitochondrial respiration genes in VSMCs. In vitro, DMF treatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species (ROS). These effects rendered VSMCs vul-nerable to oxidative stress and led to mitochondrial dysfunction and enhancement of apoptosis. Taken together, our data support the concept that the DMF-mediated antiproliferative effect on VSMCs is linked to disturbed antioxidative functions resulting in altered mitochondrial metabo-lism. This negative impact of DMF treatment on VSMCs may be linked to preexisting alterations of cerebrovascular function due to renal hypertension. Therefore, before severe adverse effects emerge, it would be clinically relevant to develop indices or biomarkers linked to this disturbed antioxidative function to monitor patients undergoing DMF treatment.
ORGANISM(S): Mus musculus
PROVIDER: GSE268079 | GEO | 2024/06/20
REPOSITORIES: GEO
ACCESS DATA