Highly multiplexed spatial transcriptomics in bacteria
Ontology highlight
ABSTRACT: Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based, transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH, a method enabling high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH could prove useful in the study of bacterial single-cell decisions made in diverse, spatially structured, and native environments.
ORGANISM(S): Escherichia coli str. K-12 substr. MG1655
PROVIDER: GSE268480 | GEO | 2024/11/12
REPOSITORIES: GEO
ACCESS DATA