A single-cell atlas deconstructs heterogeneity across multiple models in murine traumatic brain injury and identifies novel cell-specific targets
Ontology highlight
ABSTRACT: The problem of traumatic brain injury (TBI) heterogeneity has been a critical barrier to successful translation of therapies in the field. TBI heterogeneity exists in the patient substrate pre-injury (genetics, sex, comorbidities), external injury characteristics (severity, mechanism), and resultant post-injury host response that is responsible for deleterious secondary injury processes (seizures, neuroinflammation, neurodegeneration) and repair/regeneration. Identification of final common molecular pathways and signatures that integrate this vast heterogeneity could be valuable for guiding biomarkers, therapeutic targets, and predictive enrichment. In this study, we present the first large-scale searchable murine single-cell atlas of the transcriptomic response to TBI in 339,357 cells as a foundational step in molecularly deconstructing TBI heterogeneity. We identify 23 cell types with massive heterogeneity in the single-cell response across extrinsicand intrinsic factors, that has been underestimated. Majority of response to TBI was unique to individual cell populations with minimal overlap even within a single injury-model thus highlighting the importance of cell-level resolution. Through this effort, we report novel cell-specific targets and a previously unrecognized role for specific microglial and ependymal subtypes in post-TBI pathophysiology that is highly variable depending on the extrinsic and intrinsic factors studied. One ependymal subtype was a hub of neuroinflammatory signaling after contusional-TBI, particularly related to Il-1b. A single microglial-lineage along pseudotime (comprising 3 microglial subtypes) was a key mediator of host-response after TBI, and shared features with disease associated microglia noted in Alzheimer’s disease and other neurodegenerative disorders, potentially providing a link between TBI and accelerated neurodegeneration. One microglial subtype within this lineage emerged as a key target – it was the only cell type of all 23 that retained persistent and marked gene expression changes 6 months post contusional-TBI. We identify sexually dimorphic gene expression and pathway vulnerabilities with cell-specific differences in both immune and non-immune biological processes. These likely contribute to sex-based outcome and warrant further study to facilitate discovery of cell- and sex-specific druggable targets. Active changes in brain regions distal from the site of primary TBI impact included infiltration of specific microglial populations as well as cell-specific transcriptomic changes in several genes and inflammatory processes distinct from both the peri-contusional and naïve signatures. This atlas validates several known contributors in TBI pathophysiology, and also identifies previously unrecognized targets and avenues for further research. Beyond our presented exemplar analyses (including pathways of clinical interest like sulfonylurea-receptor-1), the companion searchable atlas serves as a foundation for countless future efforts to understand cell-specific heterogeneity after TBI (https://shiny.crc.pitt.edu/cerebri/) as well as numerous other neurological diseases with overlapping pathophysiology.
Project description:Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome in the days (3- and 7-days) to 1 month (28 days) after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 1 month. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation as well as insulin and estrogen signalling in males compared with female mice that occurred with or without a brain injury. Although microglial response was similar between males and females up to 1 month following TBI, biological sex differences in the basal microglial proteome has implications for the efficacy of treatment strategies targeting the microglial response post-injury.
Project description:Traumatic brain injury (TBI) can lead to significant neuropsychiatric problemsand neurodegenerative pathologies, which develop and persist years after injury. Neuroinflammatory processes evolve over this same period. Cortical mRNA analysis showed a robust contribution of microglia to neuroinflammatory pathways that persisted over time post-injury. These data also indicate that inflammation persists in the subacute and chronic time points after TBI, which may affect surrounding neurons, oligodendrocytes and astrocytes. To investigate this hypothesis, a single-cell sequencing approach was used to determine cell-type specific gene expression within the cortex 7 dpi with and without microglial depletion.
Project description:Traumatic brain injury (TBI) is an under-recognizedpublic healththreat. Even mild brain injuries can lead to long-term neurologic impairment.Microgliaplay a fundamental role in the development and progression of this ensuing neurologic impairment. Despite this, a microglia-specific injury signature has yet to be identified. We hypothesized that TBI would lead to long-term changes in the transcriptional profile of microglial pathways associated with the development of subsequent neurologic impairment.
Project description:Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes were recapitulated in C57BL6J wild-type mice which were subjected to TBI and received treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation and oligodendrogenesis, which contributes to accelerated white matter repair and neurological function recovery after TBI.
Project description:The spinal cord neural stem cell potential is contained within the ependymal cells lining the central canal. Ependymal cells are, however, heterogeneous and we know little about what this reflects. To gain new insights into ependymal cell heterogeneity, we microdissected the ependymal cell layer from the thoracic spinal cord of 4 FOXJ1-EGFP transgenic mice (2.5-to-3-month old). After after dissociating the tissue into a cell suspension, we sorted single GFP-positive ependymal cells into lysis plates. cDNA synthesis was performed using Smart-seq2 technology.
Project description:Background: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. Methods: Three mice brains were collected from each group including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD); and subsequently analyzed by label-free quantitative proteomics. Results: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1 and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). Conclusions: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI’s neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Project description:After spinal cord injury, ependymal cells considered as stem cells activate, proliferate and differentiate mainly into glial cells. To understand this further at the molecular level, we performed RNA profiling of these cells in situ using laser-dissection and also when they are cultured as neurospheres in different conditions (growth, differentiation, dedifferentiation) Abstract: Numerous vertebrates, including Human, maintain a pool of immature cells in the ependymal region of the adult spinal cord. During injury, these ependymal cells, considered as multipotent stem cells, rapidly activate, proliferate and generate neurons and glial cells in lower vertebrates or mainly glial cells in mammals. The mechanisms underlying this activation are ill-defined and we intended to fill this gap by performing RNA profiling of mouse ependymal region after lesion. Bioinformatics and immunofluorescence identified activation of STAT3 and ERK/MAPK signaling in ependymal cells after injury. This was also accompanied by downregulation of cilia-associated genes and FoxJ1, a central transcription factor of ciliogenesis. Six genes were upregulated more than 20 fold, namely Crym, Ecm1, Ifi202b, Nupr1, Osmr, Rbp1, Thbs2 whereas only one, Acta1 was downregulated to this extent. We explored further the role and regulation in ependymal cells of Osmr, the receptor for oncostatin (OSM). This inflammatory cytokine is specifically expressed by microglia cells and we observed interactions between these cells and ependymal cells in vivo. Using culture of ependymal cells in neurospheres, we found that several cytokines induced OSMR, OSM being the most potent. OSMR is also upregulated by co-culture with OSM-expressing microglial cells. Treatment of spinal cord neural stem cells with OSM decreased their proliferation, upregulate p-Stat3 and reduced their differentiation into oligodendrocyte-lineage Olig1+ cells. These results suggest an important role for microglia-derived oncostatin in the activation and fate of spinal cord ependymal cell.
Project description:Traumatic brain injury (TBI) alters and dysregulates the expression of thousands of genes in the brain. Since some of the most common problems in TBI patients are learning and memory deficits, we are studying the effects of TBI on the hippocampus, a region of the brain which is essential for learning and memory and which is known to be particularly vulnerable to TBI. We are interested in understanding how potential neuroprotective drugs alter the TBI-induced gene expression profile. The objective of this study is to elucidate and compare the differential gene expression profiles in the hippocampus of naive, sham-control, TBI and TBI plus drug treated rats. JM6, PMI-006 and E33 are three compounds with neuroprotective, anti-inflammatory and anti-oxidative effects. Our goal is to determine if different neuroprotective compounds have similar effects on common gene targets. These genes and the cell signaling pathways linked to them would then be the target of new therapeutic strategies for TBI. Rats were prepared for fluid percussion traumatic brain injury or sham injury (naïve rats had no anesthesia and were not handled in any way and gene expression in their brains serve as baseline data) and 24 hr post-injury, hippocampi were obtained, and stored in RNA later. Total RNA was isolated, quantitified and used for Agilent microarray analysis at GenUs Biosystems. Each group of naive, sham control, TBI and TBI plus JM6, TBI plus PMI-006 and TBI plus E33 (estrogen) has three biological replicates.
Project description:Efficacious stem cell-based therapies for traumatic brain injury (TBI) depend on successful delivery, migration, and engraftment of stem cells to induce neuroprotection. L-myc expressing human neural stem cells (LMNSC008) demonstrate an inherent tropism to injury sites after intranasal (IN) administration. We hypothesize that IN delivered LMNSC008 cells migrate to primary and secondary injury sites and modulate biomarkers associated with neuroprotection and tissue regeneration. To test this, immunocompetent adult female rats received a controlled cortical impact injury (CCI) or sham surgery. LMNSC008 cells or a vehicle (VEH) were administered IN on postoperative days 7, 9, 11, 13, 15, and 17. The distribution and migration of eGFP-expressing LMNSC008 cells were quantified over 1 mm-thick optically cleared (CLARITY) coronal brain sections from TBI and SHAM controls. NSC migration was observed along white matter tracts projecting toward the hippocampus and regions of TBI. ELISA and Nanostring assays revealed a shift in tissue gene expression in LMNSC008 treated rats relative to controls. LMNSC008 treatment reduced expression of genes and pathways involved in inflammatory response, microglial function, and various cytokines and receptors. The data demonstrate a robust proof-of-concept for LMNSC008 therapy for TBI and provides a strong rationale for IN delivery for translation in TBI patients. NanoString RNAseq sample preparation and data acquisition
Project description:This study investigates the effects of controlled cortical impact (CCI), a form of traumatic brain injury (TBI), using a 3D silk scaffold cell culture model. Human induced neural stem cells (iNSCs), human induced astrocytes, and HMC3 microglial cells were seeded onto the silk scaffolds and allowed to grow under controlled conditions. A subset of these cell cultures was then subjected to CCI to simulate injury. The primary aim of the study was to assess the cellular and molecular response to CCI, particularly focusing on miRNA expression profiles. miRNA Nanostring technology was employed to quantify differential expression patterns associated with CCI exposure, providing insights into neuroinflammatory, regenerative, and apoptotic pathways impacted by the injury. These data contribute to a better understanding of miRNA's role as a biomarker for TBI and its potential involvement in cellular recovery and neuroprotection processes following traumatic injury.