Temporal changes in the microglial proteome of male and female mice after a diffuse brain injury using label-free quantitative proteomics
Ontology highlight
ABSTRACT: Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome in the days (3- and 7-days) to 1 month (28 days) after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 1 month. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation as well as insulin and estrogen signalling in males compared with female mice that occurred with or without a brain injury. Although microglial response was similar between males and females up to 1 month following TBI, biological sex differences in the basal microglial proteome has implications for the efficacy of treatment strategies targeting the microglial response post-injury.
INSTRUMENT(S): Q Exactive HF
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Microglia
SUBMITTER: Richard Wilson
LAB HEAD: Dr Richard Wilson
PROVIDER: PXD033628 | Pride | 2023-03-11
REPOSITORIES: Pride
ACCESS DATA