PAX8 interacts with the SWI/SNF complex at enhancers to drive proliferation in ovarian cancer
Ontology highlight
ABSTRACT: Activation of lineage-specific gene expression programs is mediated by the sequence-specific recruitment of transcriptional coactivators to chromatin. This occurs via interaction with lineage specific DNA binding transcription factors. The lineage factor PAX8 drives essential gene expression in ovarian cancer cells and is required for tumor proliferation. However, the molecular details surrounding co-factor recruitment and specific activation of transcription by PAX8 remain unknow. Here, we identify an important functional interaction between PAX8 and the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. We show that PAX8 can recruit SWI/SNF complexes to DNA, where they function to open chromatin and facilitate expression of PAX8 target genes. Genetic deletion of PAX8 results in loss of SWI/SNF from PAX8 bound enhancers, loss of expression of associated target genes, and reduced proliferation. These results can be phenocopied by pharmacological inhibition of SWI/SNF ATPase activity. These data indicate that PAX8 mediates the expression of an essential ovarian cancer proliferative program in part by the recruitment of chromatin remodelers.
Project description:Activation of lineage-specific gene expression programs is mediated by the sequence-specific recruitment of transcriptional coactivators to chromatin. This occurs via interaction with lineage specific DNA binding transcription factors. The lineage factor PAX8 drives essential gene expression in ovarian cancer cells and is required for tumor proliferation. However, the molecular details surrounding co-factor recruitment and specific activation of transcription by PAX8 remain unknow. Here, we identify an important functional interaction between PAX8 and the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. We show that PAX8 can recruit SWI/SNF complexes to DNA, where they function to open chromatin and facilitate expression of PAX8 target genes. Genetic deletion of PAX8 results in loss of SWI/SNF from PAX8 bound enhancers, loss of expression of associated target genes, and reduced proliferation. These results can be phenocopied by pharmacological inhibition of SWI/SNF ATPase activity. These data indicate that PAX8 mediates the expression of an essential ovarian cancer proliferative program in part by the recruitment of chromatin remodelers.
Project description:The SWI/SNF ATP-dependent chromatin remodeler is a master regulator of the epigenome; controlling pluripotency, cell fate determination and differentiation. There is a sparsity of information on the autoregulation of SWI/SNF, the domains involved and their mode of action. We find a DNA or RNA binding module conserved from yeast to humans located in the C-terminus of the catalytic subunit of SWI/SNF called the AT-hook that positively regulates the chromatin remodeling activity of yeast and mouse SWI/SNF. The AT-hook in yeast SWI/SNF interacts with the SnAC and ATPase domains, which after binding to nucleosome switches to contacting the N-terminus of histone H3. Deletion of the AT-hooks in yeast SWI/SNF and mouse esBAF complexes reduces the remodeling activity of SWI/SNF without affecting complex integrity or its recruitment to nucleosomes. In addition, deletion of the AT-hook impairs the ATPase and nucleosome mobilizing activities of yeast SWI/SNF without disrupting the interactions of the ATPase domain with nucleosomal DNA. The AT-hook is also important in vivo for SWI/SNF-dependent response to amino acid starvation in yeast and for cell lineage priming in mouse embryonic stem cells. In summary, the AT-hook is shown to be an evolutionarily conserved autoregulatory domain of SWI/SNF that positively regulates SWI/SNF both in vitro and in vivo.
Project description:Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance seen in 10% of these patients is through lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify SWI/SNF subunits that are deregulated in NEPC, demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease and that SMARCA4 depletion impairs prostate cancer cell growth. We also show that SWI/SNF complexes interact with different lineage-specific factors in prostate adenocarcinoma and in NEPC cells, and that induction of lineage plasticity through depletion of REST is accompanied by changes in SWI/SNF genome occupancy. These data suggest a specific role for mSWI/SNF complexes in therapy-related lineage plasticity, which may be relevant for other solid tumors.
Project description:Tissue-specific transcription factors initiate differentiation toward a specialized cell type by inducing transcription-permissive chromatin modifications at target gene promoters, through the recruitment of the SWI/SNF chromatin-remodeling complex (1, 2). The molecular mechanism that regulates the chromatin re-distribution of SWI/SNF in response to differentiation signals is currently unknown. Here we show that the muscle determination factor MyoD and the SWI/SNF structural sub-unit, BAF60c (SMARCD3), form a complex on the regulatory elements of MyoD-target genes in undifferentiated myoblasts, prior to the activation of gene expression. MyoD-BAF60c complex is devoid of the ATP-dependent enzymatic sub-units Brg1 and Brm, is required for stable MyoD binding to Ebox sequences, and marks the chromatin for signal-dependent recruitment of the SWI/SNF core complex to muscle loci. BAF60c phosphorylation on a conserved threonine by differentiation-activated p38 signalling promotes the incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which is competent to remodel the chromatin and activates transcription of MyoD-target genes. Our data support an unprecedented two-step model, by which pre-assembled BAF60c-MyoD complex directs the SWI/SNF complex chromatin re-distribution to muscle loci in response to differentiation cues. Differentiation of C2C12 cells individually interfered for BRG1, BAF60B, BAF60C
Project description:The SWI/SNF chromatin remodeling complex is altered in ~20% of human cancers. ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is the most frequently mutated epigenetic regulator in human cancers. Inactivation of the SWI/SNF complex is synthetically lethal with inhibition of EZH2 activity. EZH2 inhibitors are entering clinical trials for specific tumor types with SWI/SNF mutations. However, mechanisms of de novo or acquired resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations are unknown. Here we show that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated ovarian cancer cells.
Project description:The SWI/SNF chromatin remodeling complex is altered in ~20% of human cancers. ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is the most frequently mutated epigenetic regulator in human cancers. Inactivation of the SWI/SNF complex is synthetically lethal with inhibition of EZH2 activity. EZH2 inhibitors are entering clinical trials for specific tumor types with SWI/SNF mutations. However, mechanisms of de novo or acquired resistance to EZH2 inhibitors in cancers with inactivating SWI/SNF mutations are unknown. Here we show that the switch of the SWI/SNF catalytic subunits from SMARCA4 to SMARCA2 drives resistance to EZH2 inhibitors in ARID1A-mutated ovarian cancer cells.
Project description:Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cancer types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 megabases downstream of Myc that are occupied by SWI/SNF, as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in 3% of acute myeloid leukemia. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs In order to understanding the lineage specific requirement of coactivaor, such as Brg1 and Brd4, in AML, we performed ChIP-seq with Brg1, Brd4 together with histone modification marks in murine MLL-AF9/NrasG12D AML cell line to search tissue specific cis regulation element that can be accounted for the leukemia specific dependence.
Project description:The composition of chromatin remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. Here, we investigate the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits, with low levels of Brm, BAF170 and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identify Brd7 as a novel component of the PBAF complex in both ESCs and differentiated cells. Using shRNA-mediated depletion of Brg1, we show that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, Bmi-1, CRABP1 and TRH. Knock-down studies of PBAF-specific Brd7 and of a signature subunit within the BAF complex, ARID1A, show that these two sub-complexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally, we examine the role of SWI/SNF in regulating its target genes during differentiation. We find that SWI/SNF affects recruitment of components of the pre-initiation complex in a promoter-specific manner, to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action. R1 ESCs were infected in duplicates with shRNA targeting Brg1 or GLUT4 (as a control). Knockdown of Brg1 mRNA affected Brg1 protein levels efficiently. RNA was isolated 67 hours post-infection and analyzed using microarrays.
Project description:The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a key role in regulating gene expression in a context-dependent manner. SWI/SNF actively maintains open chromatin states across the genome and responds dynamically to cellular signals. However, the precise mechanisms determining how SWI/SNF is targeted to specific genomic sites remain elusive. In this study we demonstrate that long non-coding RNAs (lncRNAs) are pivotal in the binding of the SWI/SNF complex to specific genomic targets. The interaction between SWI/SNF and lncRNAs is essential for the recruitment of the complex to gene regulatory elements, where it plays a critical role. We show that trans-acting lncRNAs direct the SWI/SNF complex to cell-specific enhancers, with lncRNA knockdowns leading to a genome-wide redistribution of SWI/SNF away from these enhancers. This redistribution impacts the expression of genes connected to these enhancers, underscoring the critical role of lncRNAs in the specific targeting of SWI/SNF to DNA. This insight into the targeting mechanisms of SWI/SNF by lncRNAs has broad implications, from understanding the processes of gene expression control to identifying therapeutic targets in diseases associated with SWI/SNF dysfunction, such as cancer.