Brd7, a novel PBAF-specific SWI/SNF subunit, is required for gene activation and repression in embryonic stem cells
Ontology highlight
ABSTRACT: The composition of chromatin remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. Here, we investigate the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits, with low levels of Brm, BAF170 and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identify Brd7 as a novel component of the PBAF complex in both ESCs and differentiated cells. Using shRNA-mediated depletion of Brg1, we show that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, Bmi-1, CRABP1 and TRH. Knock-down studies of PBAF-specific Brd7 and of a signature subunit within the BAF complex, ARID1A, show that these two sub-complexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally, we examine the role of SWI/SNF in regulating its target genes during differentiation. We find that SWI/SNF affects recruitment of components of the pre-initiation complex in a promoter-specific manner, to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action. R1 ESCs were infected in duplicates with shRNA targeting Brg1 or GLUT4 (as a control). Knockdown of Brg1 mRNA affected Brg1 protein levels efficiently. RNA was isolated 67 hours post-infection and analyzed using microarrays.
ORGANISM(S): Mus musculus
SUBMITTER: Matthias Kaeser
PROVIDER: E-GEOD-7791 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA