Longitudinal transcriptomic analysis reveals persistent enrichment of iron homeostasis and erythrocyte function pathways in severe COVID-19 ARDS
Ontology highlight
ABSTRACT: The acute respiratory distress syndrome (ARDS) is a common complications of severe COVID-19 and contributes to patient morbidity and mortality. ARDS is a heterogeneous syndrome caused by various insults, and results in acute hypoxemic respiratory failure. Patients with ARDS from COVID-19 may represent a subgroup of ARDS patients with distinct molecular profiles that drive disease outcomes. Here, we hypothesized that longitudinal transcriptomic analysis may identify distinct dynamic pathobiological pathways during COVID-19 ARDS. We identified a patient cohort from an existing ICU biorepository and established three groups for comparison: 1) patients with COVID-19 ARDS that survived hospitalization (COVID survivors, n = 4), 2) patients with COVID-19 ARDS that did not survive hospitalization (COVID non-survivors, n = 5), and 3) patients with ARDS from other causes as a control group (ARDS controls, n = 4). RNA was extracted from peripheral blood mononuclear cells (PBMCs) at 4 time points (Days 1, 3, 7, and 10 following ICU admission) and prepared for RNA sequencing with rRNA depletion and library generation for Illumina. An Illumina NovaSeq X Plus instrument was used to generate 150 base pair paired-end reads, which were aligned to the hg GRCh38.96 reference genome using HiSAT2. Differential expression analysis was performed with DESeq2.
ORGANISM(S): Homo sapiens
PROVIDER: GSE273149 | GEO | 2024/07/29
REPOSITORIES: GEO
ACCESS DATA