Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors [ChIPseq_D-2_D0_D5_D8]
Ontology highlight
ABSTRACT: White adipose tissue (WAT) plays a central role in lipid storage and systemic energy, lipid, and glucose homeostasis. Understanding the intricacies of adipocyte formation could inform therapies for obesity and metabolic disorders. We have identified the POZ/BTB and AT Hook Containing Zinc Finger 1 (PATZ1) protein as an adipogenic transcription factor through an unbiased high-throughput cDNA screen for transcriptional modulators of adipogenesis. PATZ1 is expressed by both human and mouse adipocyte precursor cells (APCs) and adipocytes, and in cell models, PATZ1 expression promotes adipogenesis through a mechanism dependent on protein-protein interaction and DNA binding. Both adipocyte-specific and APC-specific ablation of PATZ1 in mice leads to decreased fat mass and hypertrophied adipocytes. Genome-wide PATZ1 DNA binding analyses using ChIP-Seq suggest PATZ1 facilitates adipogenesis through interactions with transcription factor machinery at the promoter regions of critical early adipogenic factors and histone modifiers. Purification of the PATZ1 complex showed that General Transcription Factor 2I (GTF2I) associates with PATZ1 in a differentiation-dependent manner. Downregulation of GTF2I levels during adipogenesis markedly augments PATZ1 adipogenic function, suggesting a repressive interaction between GTF2I and PATZ1. These findings identify PATZ1 as a regulator of both adiposity and adipocyte differentiation programs and advance our understanding of the complex transcriptional mechanisms underlying adipose tissue development and homeostasis.
ORGANISM(S): Mus musculus
PROVIDER: GSE273319 | GEO | 2024/07/29
REPOSITORIES: GEO
ACCESS DATA