Transcriptional response of an azole-resistant Candida parapsilosis isolate [posaconazole].
Ontology highlight
ABSTRACT: Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of posaconazole. Whole genome microarrays were used to compare the transcriptional response of the posaconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of voriconazole. Whole genome microarrays were used to compare the transcriptional response of the voriconizole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of fluconazole. Whole genome microarrays were used to compare the transcriptional response of the fluconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of voriconazole. Whole genome microarrays were used to compare the transcriptional response of the voriconizole-resistant and susceptible isolates. Transcriptional profile of an in vitro derived voriconazole-resistant isolate of C. parapsilosis (BC014VRC) compared to the susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 4 independent biological replicates were compared; 2 dye swaps were performed to normalize dye effects.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of fluconazole. Whole genome microarrays were used to compare the transcriptional response of the fluconazole-resistant and susceptible isolates. Transcriptional profile of in vitro derived fluconazole resistant isolate of C. parapsilosis (BC014FLC) compared to susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 4 independent biological replicates were compared; 2 dye swaps were performed to normalize dye effects.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of posaconazole. Whole genome microarrays were used to compare the transcriptional response of the posaconazole-resistant and susceptible isolates. Transcriptional profile of an in vitro derived posaconazole-resistant isolate of C. parapsilosis (BC014PSC) compared to the susceptible isolate (BC014S). Cell were grown in YPD medium in normoxia at 35 degrees. Each strain was labelled with Cy3 or Cy5. Overall, 3 independent biological replicates were compared; 1 dye swap was performed to normalize dye effects.
Project description:This SuperSeries is composed of the following subset Series: GSE27405: Transcriptional response of an azole-resistant Candida parapsilosis isolate [fluconazole]. GSE27407: Transcriptional response of an azole-resistant Candida parapsilosis isolate [posaconazole]. GSE27408: Transcriptional response of an azole-resistant Candida parapsilosis isolate [voriconazole]. Refer to individual Series
Project description:The present study describes a novel mechanism of antifungal resistance affecting the susceptibility of both the azole and echinocandin antifungals in an azole-resistant isolate from a matched pair of C. parapsilosis isolates obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate including upregulation of ERG1, ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, ERG27, DAP1 and UPC2, of the ergosterol biosynthesis pathway. Whole genome sequencing revealed a mutation in the ERG3 gene leading to a G111R amino acid substitution in the resistant isolate. Subsequent introduction of this allele in the native ERG3 locus in the susceptible isolate resulted in a fluconazole MIC of >64 mg/ml and a caspofungin MIC of 8 mg/ml. Corresponding allelic replacement of the wildtype allele for the mutant allele in the resistant isolate resulted in a drop in MIC to 1 mg/ml for both fluconazole and caspofungin. Sterol profiles indicated a loss of sterol demethylase activity as a result of this mutation. This work demonstrate that this G111R mutation is wholly responsible for the resistant phenotype in the C. parapsilosis resistant isolate and is the first report of this multidrug resistance mechanism.
Project description:Microarray was used to analyze azole resistance of Candida glabrata oropharyngeal isolates from 7 hematopoietic stem cell transplant recipients receiving fluconazole prophylaxis. Transcriptional profiling of the sequential-paired clinical isolates by microarray revealed 19 genes upregulated in the majority of resistant isolates compared to their paired-susceptible isolates. All seven resistant isolates had greater than two fold upregulation of CgPDR1, a master transcriptional regulator of PDR network, and all 7 resistant isolates showed upregulation of known CgPDR1-target genes. The altered transcriptome can be explained in part by the observation that all 7 resistant isolates had acquired a single nonsynonymous mutation in their CgPDR1 ORF. Four mutations occurred in the regulatory domain (L280P, L344S, G348A, S391L) and one in the activation domain (G943S) while two mutations (N764I, R772I) occurred in an undefined region. Association of azole resistance and the CgPDR1 mutations was investigated in the same genetic background by introducing the CgPDR1 sequences from one sensitive and five resistant isolates into a laboratory azole-sensitive strain (cgpdr1) via integrative transformation. The cgpdr1 strain was restored to wild-type fluconazole susceptibility when transformed with CgPDR1 from the susceptible isolate but became resistant when transformed with CgPDR1 from the resistant isolates. However, despite the identical genetic background, upregulation of CgPDR1 and CgPDR1-target genes varied between the 5 transformants, independent of the domain locations in which the mutations occurred. In sum, gain-of-function mutations in CgPDR1 not only contributed to the clinical azole resistance but different mutations had varying degrees of impact on the CgPDR1-target genes.
Project description:Microarray was used to analyze azole resistance of Candida glabrata oropharyngeal isolates from 7 hematopoietic stem cell transplant recipients receiving fluconazole prophylaxis. Transcriptional profiling of the sequential-paired clinical isolates by microarray revealed 19 genes upregulated in the majority of resistant isolates compared to their paired-susceptible isolates. All seven resistant isolates had greater than two fold upregulation of CgPDR1, a master transcriptional regulator of PDR network, and all 7 resistant isolates showed upregulation of known CgPDR1-target genes. The altered transcriptome can be explained in part by the observation that all 7 resistant isolates had acquired a single nonsynonymous mutation in their CgPDR1 ORF. Four mutations occurred in the regulatory domain (L280P, L344S, G348A, S391L) and one in the activation domain (G943S) while two mutations (N764I, R772I) occurred in an undefined region. Association of azole resistance and the CgPDR1 mutations was investigated in the same genetic background by introducing the CgPDR1 sequences from one sensitive and five resistant isolates into a laboratory azole-sensitive strain (cgpdr1) via integrative transformation. The cgpdr1 strain was restored to wild-type fluconazole susceptibility when transformed with CgPDR1 from the susceptible isolate but became resistant when transformed with CgPDR1 from the resistant isolates. However, despite the identical genetic background, upregulation of CgPDR1 and CgPDR1-target genes varied between the 5 transformants, independent of the domain locations in which the mutations occurred. In sum, gain-of-function mutations in CgPDR1 not only contributed to the clinical azole resistance but different mutations had varying degrees of impact on the CgPDR1-target genes.