Combinatorial binding of transcription factors in the pluripotency control regions of the genome
Ontology highlight
ABSTRACT: The pluripotency control regions (PluCRs) are defined as genomic regions that are bound by Oct4, Sox2, and Nanog in vivo. We utilized a high-throughput binding assay to record more than 270,000 different DNA/protein binding measurements along incrementally tiled windows of DNA within these PluCRs. This high-resolution binding map is then used to systematically define the context of Oct factor binding and reveals patterns of cooperativity and competition in the pluripotency network. The most prominent pattern is a pervasive binding competition between Oct4 and the forkhead transcription factors. Like many transcription factors, Oct4 is co-expressed with a paralog, Oct1, that shares an apparently identical binding specificity. By analyzing thousands of binding measurements we discover context effects that discriminate Oct1 from Oct4 binding. Proximal Nanog binding promotes Oct4 binding, whereas nearby Sox2 binding favors Oct1. We demonstrate by cross-species comparison and by chromatin immunoprecipitation (ChIP) that the contextual sequence determinants learned in vitro are sufficient to predict Oct1 binding in vivo.
ORGANISM(S): Homo sapiens
PROVIDER: GSE27535 | GEO | 2011/03/03
SECONDARY ACCESSION(S): PRJNA138551
REPOSITORIES: GEO
ACCESS DATA