Insight into the epigenetic regulation of gene expression in the bloodstream and procyclic forms of Trypanosoma brucei through the involvement of G-Quadruplexes
Ontology highlight
ABSTRACT: The study investigates the epigenetic role of G-quadruplexes (G4s) in the differentiation of Trypanosoma brucei brucei, specifically between its bloodstream form (BF) and procyclic form (PC). An in silico analysis identified 115,126 potential G4 sequences (PQSs) across the genome, with 63% having a high probability of G4 formation. These PQSs are unevenly distributed, with notable enrichment in regions associated with antigenic variation, such as variant surface glycoproteins and bloodstream expression sites. The differential distribution of PQSs correlates with regions of high densities of differentially expressed genes, suggesting a regulatory role in morphological transitions. The study assessed the effects of G4-ligands (AQ1, Pt-TTPY, and pyridostatin) on gene expression, revealing significant downregulation of DEGs and highlighting their therapeutic potential. Functional analysis using Gene Ontology indicated that G4-ligands impact various biological processes differently in BF and PC forms. These findings underscore the epigenetic complexity of T. brucei and the potential of G4 structures as key regulators of gene expression and differentiation, offering novel insights into therapeutic strategies targeting the parasite's adaptive mechanisms.
Project description:Surface-exposed proteins of the bloodstream and procyclic forms of T. brucei were biotinylated, affinity purified using streptavidin, and analyzed by LC-MS/MS
Project description:Trypanosoma brucei subspecies infect humans and animals in sub-Saharan Africa. This early diverging eukaryote shows many novel features in basic biological processes, including the use of polycistronic transcription to generate all protein-coding mRNAs. Therefore we hypothesized that translational control provides a means to tune gene expression during parasite development in mammalian and fly hosts. We used ribosome profiling to examine genome-wide protein production in animal-derived slender bloodstream forms and cultured procyclic (insect midgut) forms. About one-third of all CDSs showed statistically significant regulation of protein production between the two stages. Of these, more than two-thirds showed a change in translation efficiency, but few were controlled by this parameter alone. Ribosomal proteins were translated poorly, especially in animal-derived parasites. A disproportionate number of metabolic enzymes were up-regulated at the mRNA level in procyclic forms, as were variant surface glycoproteins in bloodstream forms. Comparison with cultured bloodstream forms from another strain identified stage-specific changes in protein production that transcend strain and growth conditions. Genes with upstream ORFs had a lower mean translation efficiency but no evidence was seen for involvement of these ORFs in stage-regulation. Ribosome profiling revealed that differences in the production of specific proteins in T. brucei slender bloodstream and procyclic forms are more common than anticipated from analysis of mRNA abundance. While in vivo and in vitro derived slender bloodstream forms of different strains are more similar to one another than to procyclic forms, they showed numerous differences at both the mRNA and protein production level. Ribosome profiling and mRNA libraries were constructed in triplicate from in vitro PCF and in vivo BF lifestages of theT. brucei Treu927 and in vitro T. brucei Lister427, to evaluate role of translational gene regulation
Project description:To address whether T. brucei has a circadian clock we probed its transcriptome by RNA-seq, searching for transcripts oscillating with a 24 hr period. For this we entrained/ synchronized parasites in vitro for three days using temperature and light as environmental stimuli and then collected parasite RNA every four hours for two consecutive days. Parasite RNA was subjected to RNA-seq analysis. We performed this protocol on two stages of the T. brucei life cycle (bloodstream and insect procyclic forms).
Project description:G-quadruplexes (G4) are secondary nucleic acid structures that have been associated with genomic instability and cancer progression. When present in the promoter of some oncogenes, G4 structures can affect gene regulation and, hence, represent a possible therapeutic target. In this study, RNA-Seq was used to explore the effect of a G4-binding anthraquinone derivative, named AQ1, on the whole-transcriptome profiles of two common cell models for the study of KIT pathways; the human mast cell leukemia (HMC1.2) and the canine mast cell tumor (C2). The highest non-cytotoxic dose of AQ1 (2 µM) resulted in 5441 and 1201 differentially expressed genes in the HMC1.2 and C2 cells, respectively. In both cell lines, major pathways such as cell cycle progression, KIT- and MYC-related pathways were negatively enriched in the AQ1-treated group, while other pathways such as p53, apoptosis and hypoxia-related were positively enriched. These findings suggest that AQ1 treatment induces a similar functional response in the human and canine cell models, and provide news insights into using dogs as a reliable translational model for studying G4-binding compounds.
Project description:G-quadruplex structures (G4s) have been identified in genomes of multiple organisms and proven to play important epigenetic regulatory roles in various cellular functions. However, the G4 formation mechanism remains largely unknown. Here, we found a negative correlation between DNA 5mC methylation and G4 abundance. The abundance of genomic G4s significantly increased when the whole-genome methylation level was reduced in DNMT1-knockout cells. This increase was then suppressed by DNMT1 over-expression. And more G4s were detected in the hypomethylated cancer cell line HepG2 and rectal cancer tissues. Besides, 5mC modification significantly inhibited G4 formation of the potential G-quadruplex sequences (PQSs). The transcription of genes with 5mC modification sites in their promoter PQSs was affected after treatment with G4 stabilizer pyridostatin or methylation inhibitor 5-aza-dC. The global reduction of genomic methylation elevates gene transcription levels through increased G4s. Taken together, DNA 5mC methylation prevents PQSs from folding into G4s in genomes.
Project description:G-quadruplex structures (G4s) have been identified in genomes of multiple organisms and proven to play important epigenetic regulatory roles in various cellular functions. However, the G4 formation mechanism remains largely unknown. Here, we found a negative correlation between DNA 5mC methylation and G4 abundance. The abundance of genomic G4s significantly increased when the whole-genome methylation level was reduced in DNMT1-knockout cells. This increase was then suppressed by DNMT1 over-expression. And more G4s were detected in the hypomethylated cancer cell line HepG2 and rectal cancer tissues. Besides, 5mC modification significantly inhibited G4 formation of the potential G-quadruplex sequences (PQSs). The transcription of genes with 5mC modification sites in their promoter PQSs was affected after treatment with G4 stabilizer pyridostatin or methylation inhibitor 5-aza-dC. The global reduction of genomic methylation elevates gene transcription levels through increased G4s. Taken together, DNA 5mC methylation prevents PQSs from folding into G4s in genomes.
Project description:G-quadruplex structures (G4s) have been identified in genomes of multiple organisms and proven to play important epigenetic regulatory roles in various cellular functions. However, the G4 formation mechanism remains largely unknown. Here, we found a negative correlation between DNA 5mC methylation and G4 abundance. The abundance of genomic G4s significantly increased when the whole-genome methylation level was reduced in DNMT1-knockout cells. This increase was then suppressed by DNMT1 over-expression. And more G4s were detected in the hypomethylated cancer cell line HepG2 and rectal cancer tissues. Besides, 5mC modification significantly inhibited G4 formation of the potential G-quadruplex sequences (PQSs). The transcription of genes with 5mC modification sites in their promoter PQSs was affected after treatment with G4 stabilizer pyridostatin or methylation inhibitor 5-aza-dC. The global reduction of genomic methylation elevates gene transcription levels through increased G4s. Taken together, DNA 5mC methylation prevents PQSs from folding into G4s in genomes.
Project description:G-quadruplex structures (G4s) have been identified in genomes of multiple organisms and proven to play important epigenetic regulatory roles in various cellular functions. However, the G4 formation mechanism remains largely unknown. Here, we found a negative correlation between DNA 5mC methylation and G4 abundance. The abundance of genomic G4s significantly increased when the whole-genome methylation level was reduced in DNMT1-knockout cells. This increase was then suppressed by DNMT1 over-expression. And more G4s were detected in the hypomethylated cancer cell line HepG2 and rectal cancer tissues. Besides, 5mC modification significantly inhibited G4 formation of the potential G-quadruplex sequences (PQSs). The transcription of genes with 5mC modification sites in their promoter PQSs was affected after treatment with G4 stabilizer pyridostatin or methylation inhibitor 5-aza-dC. The global reduction of genomic methylation elevates gene transcription levels through increased G4s. Taken together, DNA 5mC methylation prevents PQSs from folding into G4s in genomes.
Project description:G-quadruplex structures (G4s) have been identified in genomes of multiple organisms and proven to play important epigenetic regulatory roles in various cellular functions. However, the G4 formation mechanism remains largely unknown. Here, we found a negative correlation between DNA 5mC methylation and G4 abundance. The abundance of genomic G4s significantly increased when the whole-genome methylation level was reduced in DNMT1-knockout cells. This increase was then suppressed by DNMT1 over-expression. And more G4s were detected in the hypomethylated cancer cell line HepG2 and rectal cancer tissues. Besides, 5mC modification significantly inhibited G4 formation of the potential G-quadruplex sequences (PQSs). The transcription of genes with 5mC modification sites in their promoter PQSs was affected after treatment with G4 stabilizer pyridostatin or methylation inhibitor 5-aza-dC. The global reduction of genomic methylation elevates gene transcription levels through increased G4s. Taken together, DNA 5mC methylation prevents PQSs from folding into G4s in genomes.
Project description:To look at differential expression of membrane-trafficking genes, <br>we extracted RNA from exponentially growing cultures of T. brucei <br>bloodstream (BSF) and procyclic (PCF) forms, labelled and competitively <br>hybridised the cDNA to the microarray. 8 arrays, representing <br>6 BSF and 5 PCF biological replicates, as well as dye swaps were used.