Project description:In this study, we performed LC-QTOFMS-based metabolomics and RNA-seq based transcriptome analysis using seven tissues of C. officinalis.
Project description:In this study, we performed LC-QTOF-MS-based metabolomics and RNA-seq based transcriptome analysis using seven tissues of M. japonicus.
Project description:Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids' metabolism. This study provides a valuable resource for further investigation of specialized metabolites' biosynthesis in C. officinalis.
Project description:Glandular trichomes (GT) are specialized cell factories that have the capacity to produce large amounts of metabolites which can amount to over 10% of the leaf dry weight. The specific expression of secondary metabolite pathways in glandular trichomes has facilitated their elucidation. However, little is known about the connection between central carbon and specialized metabolism in these cells. To address this question, we used the type VI glandular trichomes from a cultivated (Solanum lycopersicum LA4024) and a wild tomato accession (Solanum habrochaites LA1777) as a model. Our study is based on metabolomics, transcriptomics, proteomics and 13C-labeling datasets of trichome and leaves samples. This comparative analysis allowed us to identify specific features of trichomes in comparison to leaves. Here, the transcript raw and RMA-normalized data is hosted.
Project description:Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research.
Project description:In this study, we have performed Illumina based RNA sequencing to characterize the transcriptome and expression profiles of genes expressed in 3 tissues of L. officinale. RNA sequencing and de novo transcriptome assembly of L. officinale resulted in a total of 77,047 unigenes with N50 value as 1524 bps. KEGG pathway and GO enrichment analysis using highly expressed unigenes across three tissues showed active secondary metabolic processes specifically enriched to the root of L. officinale. Expression of identified candidate unigenes for specialized metabolites biosynthesis were consistent with previous reports on accumulation of metabolites across different tissues of L. officinale.