Genomic Aberrations in Paediatric Gliomas and Embryonal Tumours
Ontology highlight
ABSTRACT: The pathogenesis of paediatric central nervous system tumours is still poorly understood. In an attempt to increase the knowledge of the genetic mechanisms underlying these tumours, we performed genome-wide screening of 17 paediatric gliomas and embryonal tumours using a combination of G-band karyotyping and array comparative genomic hybridisation (aCGH). G-banding revealed abnormal karyotypes in 56% of tumour samples (9 of 16; one failed in culture), whereas aCGH analysis found copy number aberrations in all 13 tumours that could be examined. Pilocytic astrocytomas (n=3) showed normal karyotypes or simple non-recurrent translocations by karyotyping, but revealed the now well-established recurrent gain of 7q34 by aCGH. Our series included one anaplastic oligoastrocytoma, tumours that have not previously been characterised genomically in children, and an anaplastic neuroepithelial tumour (probably an oligoastrocytoma); both tumours showed losses of chromosomes 14 by G-banding as well as structural aberrations of the long arm of chromosome 6, and loss of 14q, 17p, and 22q by aCGH. Three supratentorial primitive neuroectodermal tumours (n=5) showed aberrant karyotypes; two near-diploid with mainly structural changes and one near-triploid with several trisomies including gains of one copy of chromosomes 1, 2, and 7. aCGH confirmed these findings and revealed additional recurrent gains of 1q21-44, 3p21, and 3q29. We also describe cytogenetically for the first time a cribriform neuroepithelial tumour, a recently identified variant of atypical teratoid/rhabdoid tumour with a favourable prognosis, which showed loss of 1p33, 4q13.2, 10p12.31, 10q11.22, and 22q by aCGH.
ORGANISM(S): Homo sapiens
PROVIDER: GSE27671 | GEO | 2011/07/01
SECONDARY ACCESSION(S): PRJNA138183
REPOSITORIES: GEO
ACCESS DATA