Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin
Ontology highlight
ABSTRACT: The global burden of chronic kidney diseases is rapidly increasing and is projected to become the fifth most common cause of years of life lost worldwide by 2040. Sexual dimorphism in kidney diseases and transplantation is well known, yet sex-specific therapeutic strategies are still missing. One reason is the lack of knowledge due to the lack of inclusion of sex as a biological variable in study designs. This work aimed at identification of molecular signatures of male and female podocytes, gate-keepers of the glomerular filtration barrier. Like cardiomyocytes, podocytes are terminally differentiated cells which are highly susceptible towards pathological challenges. Podocytes are the decisive cell-type of the kidney to maintain the physiological blood-urine barrier, and disturbances of their homeostasis critically accelerate kidney function impairment. By help of a genomic mouse model, highly purified podocytes were obtained from male and female mice with and without pharmacological challenge of the mechanistic target of rapamycin (mTOR) signaling pathway which is known to be deregulated in major kidney diseases. Deep RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. Remarkably, high number of previously reported kidney disease genes showed so far unknown intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. Our work provides an in-depth database for novel targets to be tested in kidney disease models to advance with sex-specific treatment strategies.
ORGANISM(S): Mus musculus
PROVIDER: GSE276967 | GEO | 2024/09/12
REPOSITORIES: GEO
ACCESS DATA