Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness [bulk RNA-seq]
Ontology highlight
ABSTRACT: Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Project description:Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Project description:Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Defining how human pluripotent cell identity is controlled and in particular how naïve pluripotency is acquired during cell reprogramming is crucial for the future applications of pluripotent stem cells. However, the regulatory pathways of naïve cell reprogramming remain incompletely understood. Here, we used genome-wide CRISPR-Cas9 screening to identify novel regulators of primed to naïve pluripotent stem cell reprogramming, including genes that are essential for reprogramming and genes that normally impede reprogramming and whose targeted deletion led to enhanced reprogramming. Integrated analysis defined specific chromatin complexes and signalling pathways as critical regulators of naïve reprogramming, and were largely distinct from regulators of somatic cell reprogramming. Mechanistically, PRC1.3 and PRDM14 are jointly required to transcriptionally repress developmental and gene regulatory factors to ensure naïve cell reprogramming. Additionally, small molecule inhibitors of reprogramming impediments increased the efficiency of naïve cell reprogramming, and are of practical benefit that can improve on current reprogramming methods. Taken together, we have identified novel regulators controlling the establishment of naïve pluripotency in human cells, which will open up new ways to exploit the full potential of pluripotent stem cells. These results also provide new insights into mechanisms that destabilise and reconfigure cell identity during cell state transitions.
Project description:Histone acetylation and the acetyl-lysine reader Brd4 have recently been implicated in embryonic stem cell (ESC) proliferation and self-renewal. We found that na•ve pluripotent ESCs exhibit increased incorporation of glucose-derived carbons onto acetylated histones and elevations in H3K9ac and Brd4 recruitment at pluripotency gene promoters. Surprisingly, both H3K9 acetyltransferases, GCN5 and PCAF, and Brd4 recruitment were dispensable for proliferation, self-renewal and pluripotency of na•ve ESCs. Na•ve ESCs maintain gene expression by stabilizing Mediator at core pluripotency genes in a Brd4-independent manner. Brd4-independent proliferation could also be achieved in metastable ESCs by overexpression of pluripotency transcription factors. Under all conditions, self-renewal required the DNA methylcytosine oxidases Tet1 and Tet2. These data reveal that there is minimal dependence on Brd4 for self-renewal of na•ve ESCs. Instead, the relative levels of DNA methylation and transcription factor abundance determine the requirement for bromodomain recognition of histone acetylation to the maintenance of stem cell identity.
Project description:Histone acetylation and the acetyl-lysine reader Brd4 have recently been implicated in embryonic stem cell (ESC) proliferation and self-renewal. We found that naïve pluripotent ESCs exhibit increased incorporation of glucose-derived carbons onto acetylated histones and elevations in H3K9ac and Brd4 recruitment at pluripotency gene promoters. Surprisingly, both H3K9 acetyltransferases, GCN5 and PCAF, and Brd4 recruitment were dispensable for proliferation, self-renewal and pluripotency of naïve ESCs. Naïve ESCs maintain gene expression by stabilizing Mediator at core pluripotency genes in a Brd4-independent manner. Brd4-independent proliferation could also be achieved in metastable ESCs by overexpression of pluripotency transcription factors. Under all conditions, self-renewal required the DNA methylcytosine oxidases Tet1 and Tet2. These data reveal that there is minimal dependence on Brd4 for self-renewal of naïve ESCs. Instead, the relative levels of DNA methylation and transcription factor abundance determine the requirement for bromodomain recognition of histone acetylation to the maintenance of stem cell identity.
Project description:Embryonic stem cells (ESCs) and induced-pluripotent stem cells (iPSCs) self-renew and differentiate into an array of cell types in vitro and in vivo. A complex network of genetic and epigenetic pathways regulates the self-renewal and differentiation of these pluripotent cells, and the structure and covalent modifications of chromatin play a prominent role in this process. We examine nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach that enabled the identification of regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. The majority of changes in nucleosomal signatures that occur in differentiation are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of pluripotency and likely identify key regulatory regions that play a role in determining cell identity. A six chip study using total RNA recovered from three cell types with 2 replicates each
Project description:Pluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs. RNA sequencing analysis was performed in WT and Zfp281 null mouse embryonic stem cells under different pluripotent culture conditions. RNA-seq Experiments were carry out in two biological replciates. Genome binding/occupancy profiling of Zfp281 was performed in mouse embryonic stem cells by ChIP sequencing.