Effector Memory CD4+ T cells from the spleens of Interleukin1-receptor antagonist knockout mice
Ontology highlight
ABSTRACT: Interleukin-1, a pro-inflammatory cytokine, plays a crucial role in inflammatory disease pathogenesis. Interleukin-1 receptor antagonist knockout (IL-1Ra KO) mice spontaneously develop aortitis, arthritis, and dermatitis, and are employed as a model for human inflammatory diseases. Previous studies have shown that transferring total T cells from IL-1Ra KO mice into nude mice induces aortitis and arthritis; however, the roles of specific T cell subsets in these inflammatory responses remain unclear. In this study, we aimed to investigate the T cell subsets in IL-1Ra KO mice. We found that the proportion of PD-1+CD44+CD62L˗CD4+ T cells in the spleen and lymph nodes of IL-1Ra KO mice was significantly higher than that of wild type mice. RNA sequencing revealed elevated expression of basic helix-loop-helix family member e40 and granulocyte macrophage colony stimulating factor (GM-CSF) in splenic CD44+CD62L˗CD4+ T cells from IL-1Ra KO mice. In addition, GM-CSF production from splenic CD4+ T cells of IL-1Ra KO mice was significantly higher than that of wild type mice when stimulated with PMA and ionomycin in vitro. Notably, immunohistochemical staining showed infiltration of GM-CSF+CD4+ T cells at inflammatory sites in IL-1Ra KO mice. Our results suggest that a subset of GM-CSF+CD4+T cells emerges under IL-1 signal-enhanced inflammatory conditions.
Project description:Interleukin-21 (IL-21) has broad actions on T- and B-cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3. Expression of IL-21 in vivo decreased cDC numbers, and this was prevented by GM-CSF. Moreover, repetitive M-NM-1-galactosylceramide injection of mice induced IL-21 but decreased GM-CSF production by natural killer T (NKT) cells, correlating with decreased cDC numbers. Furthermore, adoptive-transfer of wild-type CD4+ T cells caused more severe colitis with increased DCs and interferon (IFN)-M-NM-3-producing CD4+ T cells in Il21r-/-Rag2-/- mice (which lack T cells and have IL-21-unresponsive DCs) than in Rag2-/- mice. Thus, IL-21 and GM-CSF exhibit cross-regulatory actions on gene regulation and apoptosis, regulating cDC numbers and thereby the magnitude of the immune response. Total 6 samples were examined. Splenic dendritic cells were treated with IL-21 and/or GM-CSF studying STAT3 and STAT5B binding in the genome
Project description:Interleukin-21 (IL-21) has broad actions on T- and B-cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3. Expression of IL-21 in vivo decreased cDC numbers, and this was prevented by GM-CSF. Moreover, repetitive α-galactosylceramide injection of mice induced IL-21 but decreased GM-CSF production by natural killer T (NKT) cells, correlating with decreased cDC numbers. Furthermore, adoptive-transfer of wild-type CD4+ T cells caused more severe colitis with increased DCs and interferon (IFN)-γ-producing CD4+ T cells in Il21r-/-Rag2-/- mice (which lack T cells and have IL-21-unresponsive DCs) than in Rag2-/- mice. Thus, IL-21 and GM-CSF exhibit cross-regulatory actions on gene regulation and apoptosis, regulating cDC numbers and thereby the magnitude of the immune response.
Project description:To evaluate the DC genome-wide gene expression in response to beta-glucan and its regulation by IL-1 receptor antagonist (IL-1RA) we used a whole genome microarray. The gene expression profiling was performed in DC left untreated or exposed to beta-glucan for 4 and 12 h, in absence or presence of IL-1RA. This strategy allowed the identification of early/immediate and late/secondary genes regulated by beta-glucan in an IL-1-dependent and -independent manner. Human monocyte-derived DC were obtained by a 6/7-d cultures of freshly isolated monocytes with recombinant human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml). Beta-glucan-associated gene expression and its regulation by IL-1RA in human DC was measured in cells left untreated or at 4 and 12 h after exposure to 10 ug/ml of particulate beta-glucan in absence or presence of 2.5 ug/ml of IL-1RA. Five different conditions (Untreated 0h, beta-glucan 4h, IL-1RA + beta-glucan 4h, beta-glucan 12h, and IL-1RA + beta-glucan 12h) were tested using DC from three different donors.
Project description:Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft versus host disease (GVHD). CD4+ T cells that produce GM-CSF have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if there exists a unique CD4+ GM-CSF+ subset that differs from other defined T helper (TH) subtypes. Using single cell RNA sequencing analysis, we identified two CD4+ GM-CSF+ T cell populations that arose during GVHD and were distinguishable by the presence or absence of IFN-γ co-expression. CD4+ GM-CSF+ IFN-γ- T cells which emerged preferentially in the colon had a distinct transcriptional profile, employed unique gene regulatory networks, and possessed a non-overlapping TCR repertoire when compared to CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T cell populations in the colon. Functionally, this CD4+ GM-CSF+ T cell population contributed to pathological damage in the GI tract which was critically dependent upon signaling through the IL-7 receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic TH GM-CSF+ subset that mediates immunopathology.
Project description:GM-CSF is involved in immune complex (IC)-mediated arthritis. However, little is known about what is the cellular source of GM-CSF and how it is regulated during IC-mediated inflammation. Using novel GM-CSF reporter mice, we show that NK cells produce GM-CSF during an IC-mediated model of inflammatory arthritis. NK cells promoted STIA in a GM-CSF-dependent manner, as deletion of NK cells and selective removal of GM-CSF production by NK cells abrogated disease. Furthermore, we show that myeloid cell activation by GM-CSF is restrained by induction of JAK/STAT checkpoint inhibitor cytokine-inducible SH2-containing protein, CIS. Myeloid cells from CIS-deficient mice had exaggerated responses to GM-CSF, and these mice develop exacerbated STIA. Our data suggest that tissue NK cells may amplify joint inflammation in arthritis via GM-CSF production and thus represent a novel target in IC-mediated pathology. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor and strategies that boost its function may provide an alternative anti-inflammatory approach.
Project description:To evaluate the DC genome-wide gene expression in response to beta-glucan and its regulation by IL-1 receptor antagonist (IL-1RA) we used a whole genome microarray. The gene expression profiling was performed in DC left untreated or exposed to beta-glucan for 4 and 12 h, in absence or presence of IL-1RA. This strategy allowed the identification of early/immediate and late/secondary genes regulated by beta-glucan in an IL-1-dependent and -independent manner. Human monocyte-derived DC were obtained by a 6/7-d cultures of freshly isolated monocytes with recombinant human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml).
Project description:This SuperSeries is composed of the following subset Series: GSE37028: Microarray analysis of Zbtb46 KO CD4+ Splenic DCs and bone marrow erythroid progenitors GSE37029: Microarray analysis of WT bone marrow myeloid progenitors, BM cultured with GM-CSF and M-CSF, and monocytes treated with GM-CSF Refer to individual Series
Project description:A growing body of evidence suggests that inflammatory cytokines have a dualistic role in immunity. In this study, we sought to determine the direct effects IFN-gamma on the differentiation and maturation of human peripheral blood monocyte-derived dendritic cells (moDC). Here, we report that following differentiation of human peripheral-blood monocytes into moDCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, interferon-gamma (IFN-gamma) induces moDC maturation and up-regulates the co-stimulatory markers CD80, CD86, CD95, and MHC Class I, enabling moDCs to effectively generate antigen-specific CD4+ and CD8+ T cell responses for multiple viral and tumor antigens. Interestingly, early exposure of monocytes to high concentrations of IFN-gamma promotes monocyte differentiation into macrophages, despite the presence of GM-CSF and IL-4. However, under low concentrations of IFN-gamma, monocytes continue to differentiate into dendritic cells possessing a unique gene-expression profile, resulting in impairments in subsequent maturation by IFN-gamma and an inability to generate effective antigen-specific CD4+ and CD8+ T cell responses compared to standard moDCs. Monocytes differentiated in the presence of low levels of IFN-gamma downregulate IFN-gamma receptor expression, impairing their response to an inflammatory rechallenge. These findings demonstrate the ability of IFN-gamma to impart differential programs on human moDCs which shape the antigen-specific T cell responses they induce. Timing and intensity of exposure to IFN-gamma can thus determine whether moDCs are tolerogenic or immunostimulating. Human monocyte-derived dendritic cells from 4 healthy donors were differentiated with either GM-CSF and IL-4 (n=4) or GM-CSF, IL-4, and IFN-gamma (n=4). These samples were subsequently hybridized to arrays as 4 biological repeats for each of the two treatment conditions.
Project description:The gut microbiota and innate immune system play critical roles in Alzheimer’s disease (AD). Bacteroides is elevated in AD patients and correlates with cerebrospinal fluid levels of Aβ and tau. We found that increased amyloid-β (Aβ) plaques in Bacteroides fragilis treated APP/PS1-21 mice were associated with altered cortical expression Aβ processing genes. B. fragilis suppressed peripheral CD4+ T cell production of GM-CSF and IL-4 and transcriptional changes in microglia related to GM-CSF and IL-4 signaling, phagocytosis, and protein degradation. Furthermore, B. fragilis impaired the microglial uptake of intracranially injected Aβ42, whereas Erysipelotrichaceae strains increased uptake. Depleting murine Bacteroidetes with metronidazole decreased amyloid load in aged 5xFAD mice, increased CD4+ T cell GM-CSF production, and activated microglial pathways related to cytokine signaling, phagocytosis and lysosomal degradation. These data suggest that the gut microbiome may contribute to AD pathogenesis by suppressing peripheral cytokines and microglia phagocytic function, leading to impaired immune-mediated Aβ clearance.
Project description:The gut microbiota and innate immune system play critical roles in Alzheimer’s disease (AD). Bacteroides is elevated in AD patients and correlates with cerebrospinal fluid levels of Aβ and tau. We found that increased amyloid-β (Aβ) plaques in Bacteroides fragilis treated APP/PS1-21 mice were associated with altered cortical expression Aβ processing genes. B. fragilis suppressed peripheral CD4+ T cell production of GM-CSF and IL-4 and transcriptional changes in microglia related to GM-CSF and IL-4 signaling, phagocytosis, and protein degradation. Furthermore, B. fragilis impaired the microglial uptake of intracranially injected Aβ42, whereas Erysipelotrichaceae strains increased uptake. Depleting murine Bacteroidetes with metronidazole decreased amyloid load in aged 5xFAD mice, increased CD4+ T cell GM-CSF production, and activated microglial pathways related to cytokine signaling, phagocytosis and lysosomal degradation. These data suggest that the gut microbiome may contribute to AD pathogenesis by suppressing peripheral cytokines and microglia phagocytic function, leading to impaired immune-mediated Aβ clearance.