Organogenesis and replication phenoypes in vivo suggest distinct effects of hypusinated and unhypusinated eIF5A
Ontology highlight
ABSTRACT: Prior to type 2 diabetes onset, β cells adapt to insulin resistance through compensation—a process that maintains insulin secretion and glucose homeostasis. Our lab has previously shown that β cell compensation requires the activity of deoxyhypusine synthase (DHPS), which post-translationally catalyzes the formation of the amino acid hypusine at Lys50 of eukaryotic initiation factor eIF5A. Although hypusinated eIF5A is required for β cell compensation, it is unclear if unhypusinated eIF5A limits this compensatory response. To identify the role of unhypusinated eIF5A, we used the following animal and cell-based models: transgenic zebrafish and inducible, β cell-specific knockout mice fed a high fat diet. Zebrafish embryos injected with morpholinos to reduce global DHPS (and accumulate unhypusinated eIF5A) showed stunted exocrine pancreas growth at 3 days post-fertilization. Although, those injected with anti-eIF5A morpholinos (to deplete all eIF5A) showed normal pancreas growth. Although a unique function of unhypusinated eIF5A has not yet been documented, these findings suggest that the presence of unhypusinated eIF5A may be the major driver of altered pancreas phenotypes. Similarly, following 4 weeks of high fat diet feeding and obesity, mice lacking total eIF5A in β cells had improved glucose tolerance compared to mice lacking DHPS in β cells, despite similar weight gain and insulin sensitivity. Taken together, our data provide evidence that DHPS deficiency and obesity conditions impair β cell function, inpart, from the accumulation of the unhypusinated form of eIF5A. Our studies reveal a mechanism in which β cells respond to obesity by regulating mRNA translation through the balance between hypusinated and unhypusinated forms of eIF5A.
Project description:Hypusinated EiF5A likely impacts diverse cellular pathways through direct regulation of its translational targets or via secondary effects on other biological processes. We examined the global effects of knockdown of EiF5A and Dhps on the transcriptome and translational landscape of MYC-induced lymphoma.
Project description:Hypusinated EiF5A likely impacts diverse cellular pathways, through direct regulation of its translational targets or via secondary effects on other biological processes. We examined the global effects of knockdown of EiF5A and Dhps on the transcriptome and translational landscape of MYC-induced lymphoma.
Project description:Deoxyhypusine synthase (DHPS) utilizes the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly-defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that allows for inducible, postnatal deletion of Dhps specifically in postnatal islet β cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces β-cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation, reduced production of the cell cycle molecule Cyclin D2, impaired β-cell proliferation, and overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in β cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.
Project description:Obesity is characterized by adipose tissue expansion, macrophage infiltration, and the development of chronic low-grade meta-inflammation that drives insulin resistance and metabolic dysfunction. Eukaryotic translation initiation factor 5A (eIF5A) is the only protein known to be uniquely post-translationally modified and activated by deoxyhypusine synthase (DHPS) to generate a hypusine (Hyp) residue. Activated eIF5A controls the translation of a subset of mRNAs that play a role in inflammation, but a role for the DHPS/eIF5AHyp axis in obesity-associated adipose tissue inflammation has not been tested. We found DHPS/eIF5AHyp levels to be increased in the stromal vascular fraction of adipose tissue from mice fed a high fat diet and in murine macrophages activated to a proinflammatory M1 phenotype. DHPS deficiency in M1 macrophages decreased global mRNA translation and protein synthesis of key inflammatory mediators, IL-1β and MIP-1α. Transcriptomes of LPS+IFN-γ-stimulated DHPS-deficient macrophages revealed reduced characteristics of an M1 signature and a phenotypic switch consistent with characteristics of an anti-inflammatory M2 signature. In support of these observations, macrophage migration in a zebrafish tailfin injury model was reduced with chemical inhibition of DHPS, and DHPS deficiency in myeloid cells of HFD-fed mice inhibited M1 macrophage accumulation in adipose tissue and improved glucose tolerance. Together, these findings indicate that DHPS is required for the translation of a subset of mRNAs required for inflammation and chemotaxis in macrophages and may contribute to a proinflammatory M1-like phenotype.
Project description:: Deoxyhypusine synthase (DHPS) utilizes the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly-defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that allows for inducible, postnatal deletion of Dhps specifically in postnatal islet β cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces β-cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation, reduced production of the cell cycle molecule Cyclin D2, impaired β-cell proliferation, and overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in β cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.
Project description:Deoxyhypusine synthase (DHPS) utilizes the polyamine spermidine to catalyze the hypusine modification of the mRNA translation factor eIF5A and promotes oncogenesis through poorly-defined mechanisms. Because germline deletion of Dhps is embryonically lethal, its role in normal postnatal cellular function in vivo remains unknown. We generated a mouse model that allows for inducible, postnatal deletion of Dhps specifically in postnatal islet β cells, which function to maintain glucose homeostasis. Removal of Dhps did not have an effect under normal physiologic conditions. However, upon development of insulin resistance, which induces β-cell proliferation, Dhps deletion caused alterations in proteins required for mRNA translation, reduced production of the cell cycle molecule Cyclin D2, impaired β-cell proliferation, and overt diabetes. We found that hypusine biosynthesis was downstream of protein kinase C-ζ and was required for c-Myc-induced proliferation. Our studies reveal a requirement for DHPS in β cells to link polyamines to mRNA translation to effect facultative cellular proliferation and glucose homeostasis.
Project description:As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional beta cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5a), which facilitates the maintenance of beta cell identity and function. The mRNA translation function of eIF5A is only active when it is post-translationally modified (hypusinated) by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of beta cell DHPS in mice reduces the synthesis of proteins critical to beta cell identity and function at the stage of beta cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the beta cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.
Project description:Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5A<sup>Hyp</sup>) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5A<sup>Hyp</sup> was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5A<sup>Hyp</sup> in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.
Project description:Peroxisome proliferator-activated receptor beta/delta protects against obesity by reducing dyslipidemia and insulin resistance via effects in various organs, including muscle, adipose tissue, liver, and heart. However, nothing is known about the function of PPAR-beta in pancreas, a prime organ in the control of glucose metabolism. To gain insight into so far hypothetical functions of this PPAR isotype in insulin production, we specifically ablated Ppar-beta in pancreas. The mutated mice developed a chronic hyperinsulinemia, due to an increase in both beta-cell mass and insulin secretion. Gene expression profiling indicated a broad repressive function of PPAR-beta impacting the vesicular compartment, actin cytoskeleton, and metabolism of glucose and fatty acids. Analyses of insulin release from the islets revealed an increased second-phase glucose-stimulated insulin secretion. Higher levels of PKD, PKC-delta and diacyglycerol in mutated animals lead to an enhanced formation of trans-Golgi network (TGN)-to-plasma-membrane transport carriers in concert with F-actin disassembly, which resulted in increased insulin secretion and its associated systemic effects. Taken together, these results provide evidence for PPAR-beta playing a repressive role on beta-cell growth and insulin exocytosis, which shed new light on its anti-obesity action. Pancreas-specific knock-out animals were generated by breeding mice harbouring a floxed Ppar-beta (PPARbetafl/fl) to mice expressing the Cre transgene under the control of the Pdx1 promoter (Pdx1Cre). Islets from 3 different animals from the knock-out group Pdx1Cre;PPARbetafl/fl and the control littermates group PPARbetafl/fl were compared.
Project description:DHPS deficiency is a rare genetic disease caused by biallelic hypomorphic variants in the Deoxyhypusine synthase (DHPS) gene. The DHPS enzyme functions in mRNA translation by catalyzing the post-translational modification, and therefore activation, of the eukaryotic initiation factor 5A (eIF5A). The observed clinical outcomes associated with human mutations in DHPS include developmental delay, intellectual disability, and seizures. Therefore, to increase our understanding of this rare disease, it is critical to determine the mechanisms by which mutations in DHPS alter neurodevelopment. In this study, we have generated patient-derived lymphoblast cell lines and demonstrated that human DHPS variants alter DHPS protein abundance and impair enzyme function. Moreover, we observe a shift in the abundance of the post-translationally modified forms of eIF5A, specifically, an increase in the nuclear localized acetylated form (eIF5AAcK47) and concomitant decrease in the cytoplasmic localized hypusinated form (eIF5AHYP). Generation and characterization of a mouse model with a genetic deletion of Dhps in the brain at birth shows that loss of hypusine biosynthesis impacts neuronal function due to impaired eIF5AHYP-dependent mRNA translation; this translation defect results in altered expression of proteins required for proper neuronal development and function. This study reveals new insight into the biological consequences and molecular impact of human DHPS deficiency and provides valuable information towards the goal of developing treatment strategies for this rare disease.