Identification of Tfeb-dependent genes downstream of mTORC1 in MEFs
Ontology highlight
ABSTRACT: Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a critical regulator of cell growth by integrating multiple signals (nutrients, growth factors, energy and stress) and is frequently deregulated in many types of cancer. We used a robust experimental paradigm involving the combination of two interventions, one genetic and one pharmacologic to identify genes regulated transcriptionally by mTORC1. In Tsc2+/+, but not Tsc2-/- immortalized mouse embryo fibroblasts (MEFs), serum deprivation downregulates mTORC1 activity. In Tsc2-/- cells, abnormal mTORC1 activity can be downregulated by treatment with rapamycin (sirolimus). By contrast, rapamycin has little effect on mTORC1 in Tsc2+/+ cells in which mTORC1 is already inhibited by low serum. Thus, under serum deprived conditions, mTORC1 activity is low in Tsc2+/+ cells (untreated or rapamycin treated), high in Tsc2-/- cells, but lowered by rapamycin; a pattern referred to as a “low/low/high/low” or “LLHL”. We found that mTORC1 regulated the expression of, among other lysosomal genes, V-ATPases through the transcription factor EB (TFEB, Tcfeb in the mouse). The knockdown of Tfeb resulted in the 'flattening' of the LLHL pattern and allowed the identification of genes regulated by mTORC1 through Tfeb
ORGANISM(S): Mus musculus
PROVIDER: GSE28021 | GEO | 2011/08/03
SECONDARY ACCESSION(S): PRJNA137965
REPOSITORIES: GEO
ACCESS DATA