Project description:This SuperSeries is composed of the following subset Series: GSE28002: Gene expression of the whole mouse eye GSE28032: Epigenetic Regulation of IL17RC in Age-related Macular Degeneration (MeDIP-chip) Refer to individual Series
Project description:Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population worldwide. Recent studies have demonstrated strong genetic associations between AMD and single nucleotide polymorphisms (SNPs) within genes such as CFH and HTRA1. However, we found monozygotic twins had discordant AMD phenotypes (one with disease, the other without disease), suggesting that an epigenetic mechanism may control the pathogenesis of AMD. We obtained genomic DNA from the twins' peripheral blood mononuclear cells (PBMCs) and subjected it to DNA methylation-chip analysis (MeDIP-chip) that profiled genome-wide DNA methylation patterns on promoters of all genes and microRNAs. Our MeDIP-chip analysis identified 256 genes with hypo-methylated promoters only in the twins with AMD and 744 genes with hyper-methylated promoters only in the twins with AMD. Importantly, the promoter region of IL17RC was associated with hypo-methylated CpG sites only in the twins with AMD but not in the twins without AMD. Two pairs of twins with discordant AMD phenotypes. MeDIP-chip analysis of DNA methylation patterns in PBMCs.
Project description:Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population worldwide. Recent studies have demonstrated strong genetic associations between AMD and single nucleotide polymorphisms (SNPs) within genes such as CFH and HTRA1. However, we found monozygotic twins had discordant AMD phenotypes (one with disease, the other without disease), suggesting that an epigenetic mechanism may control the pathogenesis of AMD. We obtained genomic DNA from the twins' peripheral blood mononuclear cells (PBMCs) and subjected it to DNA methylation-chip analysis (MeDIP-chip) that profiled genome-wide DNA methylation patterns on promoters of all genes and microRNAs. Our MeDIP-chip analysis identified 256 genes with hypo-methylated promoters only in the twins with AMD and 744 genes with hyper-methylated promoters only in the twins with AMD. Importantly, the promoter region of IL17RC was associated with hypo-methylated CpG sites only in the twins with AMD but not in the twins without AMD.
Project description:Age-Related Macular Degeneration (AMD) is a bilateral ocular condition resulting in irreversible vision impairment caused by the progressive loss of photoreceptors in the macula, a region at the center of the retina. The progressive loss of photoreceptor is a key feature of dry AMD but not always wet AMD, though both forms of AMD can lead to loss of vision. Regression-based biological age clocks are one of the most promising biomarkers of aging but have not yet been used in AMD. Here we conducted analyses to identify regression-based biological age clocks for the retina and explored their use in AMD using transcriptomic data consisting of a total of 453 retina samples including 105 Minnesota Grading System (MGS) level 1 samples, 175 MGS level 2, 112 MGS level 3 and 61 MGS level 4 samples, as well as 167 fibroblast samples. The clocks yielded good separation among AMD samples with increasing severity score viz., MGS1-4, regardless of whether clocks were trained in retina tissue, dermal fibroblasts, or in combined datasets. Clock application to cultured fibroblasts, embryonic stem cells, and induced Pluripotent Stem Cells (iPSCs) were consistent with age reprograming in iPSCs. Moreover, clock application to in vitro neuronal differentiation suggests broader applications. Interesting, many of the age clock genes identified include known targets mechanistically linked to AMD and aging, such as GDF11, C16ORF72, and FBN2. This study provides new observations for retina age clocks and suggests new applications for monitoring in vitro neuronal differentiation. These clocks could provide useful markers for AMD monitoring and possible intervention, as well as potential targets for in vitro screens.
Project description:DNA methylation age (DNAm age) estimation is a powerful biomarker of human ageing. To date, epigenetic clocks have not been evaluated in age-related macular degeneration (AMD). Here, we perform genome-wide DNA methylation analyses in blood of AMD patients with a documented smoking history (14 AMD, 16 Normal), identifying loci of differential methylation (DML) with a relaxed p-value criterion (p ≤ 10-4). We conduct DNAm age analyses using the Horvath-multi tissue, Hannum and Skin & Blood epigenetic clocks in both blood and retinal pigment epithelium (RPE). We perform Ingenuity Pathway Analysis Causal Network Analysis (IPA CNA) on the topmost significantly differentially methylated CpG probes in blood and RPE. Results show poor performance of epigenetic clocks in RPE. Epigenetic age acceleration (EAA) was not observed in AMD. However, we observe positive EAA in blood of smokers, and in smokers with AMD. DML analysis revealed hypomethylation at cg04953735 within RPTOR (p = 6.51 × 10-5; Δβ = -11.95%). IPA CNA in the RPE also identified RPTOR as the putative master regulator, predicted to be inhibited in AMD. In conclusion, this is the first study evaluating an association of epigenetic ageing in AMD. We posit a role for RPTOR as a common master regulator of methylation changes in the RPE in AMD.