Role of TGF-β in the Differential Effect of Neisseria gonorrhoeae on the Generation of Th1, Th2, and Th17 Immune Responses
Ontology highlight
ABSTRACT: The immune response to Neisseria gonorrhoeae is poorly understood, but its extensive antigenic variability and resistance to complement are thought to allow it to evade destruction by the host’s immune defenses. We propose that N. gonorrhoeae also avoids inducing protective immune responses in the first place. We previously found that N. gonorrhoeae induces IL-17-dependent innate responses in mice and suppresses Th1/Th2-dependent adaptive responses in murine cells in vitro through the induction of TGF-β. In this study using a murine model of vaginal gonococcal infection, mice treated with anti-TGF-β antibody during primary infection showed accelerated clearance of N. gonorrhoeae with incipient development of Th1 and Th2 responses and diminished Th17 responses in genital tract tissue. Upon secondary reinfection, mice that had been treated with anti-TGF-β during primary infection showed anamnestic recall of both Th1 and Th2 responses, with the development of anti-gonococcal antibodies in serum and secretions, and enhanced resistance to reinfection. In knockout mouse strains defective in Th1 or Th2 responses, accelerated clearance of primary infection due to anti-TGF-β treatment was dependent on Th1 but not Th2 activity, whereas resistance to secondary infection resulting from anti-TGF-β treatment during primary infection was due to both Th1- and Th2-dependent memory responses. We propose that N. gonorrhoeae proactively elicits Th-17-driven innate responses that it can resist, and suppresses Th1/Th2-driven specific adaptive immunity that would protect the host. Blockade of TGF-β reverses this pattern of host immune responsiveness and facilitates the emergence of protective anti-gonococcal immunity.
ORGANISM(S): Mus musculus
PROVIDER: GSE28055 | GEO | 2011/03/22
SECONDARY ACCESSION(S): PRJNA139773
REPOSITORIES: GEO
ACCESS DATA