Inhibiting EZH2 complements steroid effects in Duchenne muscular dystrophy [mouse]
Ontology highlight
ABSTRACT: Duchenne muscular dystrophy (DMD) is a devastating X-linked disorder caused by mutations in the dystrophin gene. Despite recent advances in understanding the disease etiology and applying emerging treatment methodologies, glucocorticoid derivatives remain the only general therapeutic option that can slow disease development. However, the precise molecular mechanism of glucocorticoid action remains unclear, and there is still need for additional remedies to complement the treatment. Here, using single-nucleus RNA-sequencing and spatial transcriptome analyses of human and mouse muscles, we investigated pathogenic features in DMD patients and palliative effects of glucocorticoids. Our approach further illuminated the importance of proliferating satellite cells, and revealed increased activity of a signal transduction pathway involving EZH2 in the patient cells. Subsequent administration of EZH2 inhibitors to Dmd mutant mice resulted in improved muscle phenotype through maintaining the immune-suppressing effect but overriding the muscle weakness and fibrogenic effects exerted by glucocorticoids. Our analysis reveals pathogenic mechanisms that can be readily targeted by extant therapeutic options for DMD.
Project description:Duchenne muscular dystrophy (DMD) is a devastating X-linked disorder caused by mutations in the dystrophin gene. Despite recent advances in understanding the disease etiology and applying emerging treatment methodologies, glucocorticoid derivatives remain the only general therapeutic option that can slow disease development. However, the precise molecular mechanism of glucocorticoid action remains unclear, and there is still need for additional remedies to complement the treatment. Here, using single-nucleus RNA-sequencing and spatial transcriptome analyses of human and mouse muscles, we investigated pathogenic features in DMD patients and palliative effects of glucocorticoids. Our approach further illuminated the importance of proliferating satellite cells, and revealed increased activity of a signal transduction pathway involving EZH2 in the patient cells. Subsequent administration of EZH2 inhibitors to Dmd mutant mice resulted in improved muscle phenotype through maintaining the immune-suppressing effect but overriding the muscle weakness and fibrogenic effects exerted by glucocorticoids. Our analysis reveals pathogenic mechanisms that can be readily targeted by extant therapeutic options for DMD.
Project description:Purpose: DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated in 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Methods: Reverse transcription PCR (RT-PCR) or high-throughput RNA sequencing (RNA-Seq) methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. Results: In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3’-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. Conclusions: We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
Project description:gene expression data is from RNA extracted from muscle biopsy samples taken from boys with Duchenne muscular dystrophy (DMD) or pathologically normal controls (CTRL). Each muscle biospy was examined in detail histologically by Dr. Eric P. Hoffman at Children's National Medical Center to determine stage of disease. In addition, the absence or presence of dystrophin was determined via western blot analyses. We utilized Human U133 2.0 arrays to examine the transcriptome of each muscle, and then we compared differential gene expression between DMD patient muscles and CTRL muscules. We set the FDR p value for significance at 0.05 and at least a 1.5 fold difference in DMD/CTRL compared differential gene exrpression between DMD versus Control
Project description:Absence of the dystrophin gene in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory medicine, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue for DMD, little is known about the efficacy of correction of DMD using the CRISPR/Cas9 system in mitigating the cardiomyopathy phenotype in DMD. To define the effects of CRISPR/Cas9 genome editing on structural, functional and transcriptional dysregulation in DMD-associated cardiomyopathy. We generated induced pluripotent stem cells (iPSCs) from a patient with a deletion of exon 44 of the DMD gene (ΔEx44) and his healthy brother. Here, we targeted exon 45 of the DMD gene by CRISPR/Cas9 genome editing to generate corrected DMD (cDMD) iPSC lines, wherein the DMD open reading frame was restored via reframing (RF) or exon skipping (ES). While DMD cardiomyocytes (CMs) demonstrated morphologic, structural and functional deficits compared to control CMs, CMs from both cDMD lines were similar to control CMs. Bulk RNA-sequencing of DMD CMs showed transcriptional dysregulation consistent with dilated cardiomyopathy, which was mitigated in cDMD CMs. We then corrected DMD CMs by adenoviral delivery of Cas9/gRNA and showed that postnatal correction of DMD CMs reduces their arrhythmogenic potential. Single-nucleus RNA-sequencing of hearts showed reduced transcriptional dysregulation in CMs and fibroblasts in corrected mice compared with DMD mice, consistent with reduced histopathologic changes.We show that CRISPR/Cas9-mediated correction of DMD ΔEx44 mitigates structural, functional and transcriptional dysregulation consistent with dilated cardiomyopathy irrespective of how the protein reading frame is restored. We show that these effects extend to postnatal editing in iPSC-CMs and mice. These findings provide key insights into the utility of genome editing as a novel therapeutic for DMD-associated cardiomyopathy.
Project description:Large animal models for Duchenne muscular dystrophy (DMD) are indispensible for preclinical evaluation of novel diagnostic procedures and treatment strategies. To evaluate functional consequences of Duchenne muscular dystrophy (DMD) in skeletal muscle and myocardium, we used a new genetically engineered dystrophin KO pig model displaying hallmarks of human DMD. Heart and skeletal muscle tissue samples of DMD pigs and wild-type (WT) controls at three different ages were analyzed by label-free proteomics.
Project description:Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA, miR-133b, has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of juvenile and adult mdx mice is populated by small muscle fibers and exhibits increased fibrosis, characterized by thickened interstitial space. Additional analysis revealed that loss of miR-133b exacerbates DMD-pathogenesis partly by altering satellite cell numbers and through widespread transcriptomic changes. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Project description:Rationale – Absence of the dystrophin gene in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory medicine, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue for DMD, little is known about the efficacy of correction of DMD using the CRISPR/Cas9 system in mitigating the cardiomyopathy phenotype in DMD. Objective – To define the effects of CRISPR/Cas9 genome editing on structural, functional and transcriptional dysregulation in DMD-associated cardiomyopathy. Methods and Results – We generated induced pluripotent stem cells (iPSCs) from a patient with a deletion of exon 44 of the DMD gene (ΔEx44) and his healthy brother. Here, we targeted exon 45 of the DMD gene by CRISPR/Cas9 genome editing to generate corrected DMD (cDMD) iPSC lines, wherein the DMD open reading frame was restored via reframing (RF) or exon skipping (ES). While DMD cardiomyocytes (CMs) demonstrated morphologic, structural and functional deficits compared to control CMs, CMs from both cDMD lines were similar to control CMs. Bulk RNA-sequencing of DMD CMs showed transcriptional dysregulation consistent with dilated cardiomyopathy, which was mitigated in cDMD CMs. We then corrected DMD CMs by adenoviral delivery of Cas9/gRNA and showed that postnatal correction of DMD CMs reduces their arrhythmogenic potential. Single-nucleus RNA-sequencing of hearts showed reduced transcriptional dysregulation in CMs and fibroblasts in corrected mice compared with DMD mice, consistent with reduced histopathologic changes. Conclusions – We show that CRISPR/Cas9-mediated correction of DMD ΔEx44 mitigates structural, functional and transcriptional dysregulation consistent with dilated cardiomyopathy irrespective of how the protein reading frame is restored. We show that these effects extend to postnatal editing in iPSC-CMs and mice. These findings provide key insights into the utility of genome editing as a novel therapeutic for DMD-associated cardiomyopathy.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.