Hierarchical Lineage Tracing Reveals Diverse Pathways of AML Treatment Resistance [scRNA-seq]
Ontology highlight
ABSTRACT: Cancer cells adapt to treatment, leading to the emergence of clones that are more aggressive and resistant to anti-cancer therapies. We have a limited understanding of the evolution of treatment resistance as we have lacked technologies to map the evolution of cancer under the selective pressures. To address this, we developed a hierarchical, dynamic lineage tracing method called FLARE (Following Lineage Adaptation and Resistance Evolution). We use this technique to track the progression of acute myeloid leukemia (AML) cell lines through exposure to Cytarabine (AraC), a front-line treatment in AML, in vitro and in vivo. We map distinct cellular lineages in murine and human AML cell lines that are predisposed to AraC persistence and/or resistance via upregulation of cell adhesion and motility pathways. Additionally, we highlight heritable increased expression of immunoproteasome 11S regulatory cap subunits as a potential mechanism aiding AML cell survival, proliferation, and immune escape in vivo. Finally, we validate the clinical relevance of these signatures in the TARGET-AML cohort, with a bisected response in blood and bone marrow. Our findings reveal a broad spectrum of resistance signatures attributed to significant cell transcriptional changes, and we expect this high-resolution profiling of treatment response to be a useful tool to dissect the evolution of treatment response in a wide range of tumor types.
Project description:Cancer cells adapt to treatment, leading to the emergence of clones that are more aggressive and resistant to anti-cancer therapies. We have a limited understanding of the evolution of treatment resistance as we have lacked technologies to map the evolution of cancer under the selective pressures. To address this, we developed a hierarchical, dynamic lineage tracing method called FLARE (Following Lineage Adaptation and Resistance Evolution). We use this technique to track the progression of acute myeloid leukemia (AML) cell lines through exposure to Cytarabine (AraC), a front-line treatment in AML, in vitro and in vivo. We map distinct cellular lineages in murine and human AML cell lines that are predisposed to AraC persistence and/or resistance via upregulation of cell adhesion and motility pathways. Additionally, we highlight heritable increased expression of immunoproteasome 11S regulatory cap subunits as a potential mechanism aiding AML cell survival, proliferation, and immune escape in vivo. Finally, we validate the clinical relevance of these signatures in the TARGET-AML cohort, with a bisected response in blood and bone marrow. Our findings reveal a broad spectrum of resistance signatures attributed to significant cell transcriptional changes, and we expect this high-resolution profiling of treatment response to be a useful tool to dissect the evolution of treatment response in a wide range of tumor types.
Project description:It has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Project description:It has been hypothesized that chemotherapy resistant human acute myeloid leukemia (AML) cells are enriched in an immature phenotype, cellular quiescence and leukemic initiating cells (LICs). However, these hypotheses have never been validated completely in vivo. We have developed a physiologically relevant chemotherapeutic approach with cytosine arabinoside AraC using patient-derived xenograft (PDX) models. AraC-treated AML cells are not consistently enriched for either immature cells or quiescent cells. AraC treatment does not enrich for LICs as measured by limiting dilution in secondary transplantations. Rather chemotherapy resistant cells in vivo have high levels of reactive oxygen species (ROS) and a gene signature consistent with oxidative phosphorylation (OXPHOS). Treatment of human HIGH OXPHOS but not LOW OXPHOS AML cell lines showed chemotherapy resistance in vivo, showing that essential mitochondrial functions make significant contributions to AraC resistance in AML. Accordingly, targeting mitochondrial OXPHOS metabolism through the inhibition of mitochondrial protein synthesis, the electron transfer chain or fatty acid oxidation induced an energetic shift towards LOW OXPHOS and strongly enhanced anti-leukemic effects of AraC in AML cells. These results demonstrate that chemotherapy resistance in AML is not necessarily associated with stemness but is highly dependent on a distinct oxidative metabolism, and that the HIGH OXPHOS gene signature is a robust hallmark of the AraC response in PDX and a promising therapeutic avenue to treat AML residual disease.
Project description:Therapy resistance represents a major clinical challenge in acute myeloid leukemia (AML). Here we define a “MitoScore” signature that identifies high mitochondrial oxidative phosphorylation (OxPHOS) in vivo and in AML patients. Primary AML cells with cytarabine (AraC) resistance and high MitoScore relied on mitochondrial Bcl2 and were highly sensitive to venetoclax (VEN) plus AraC (but not to VEN plus azacytidine, AZA). Single-cell transcriptomics of VEN+AraC-residual cell populations revealed adaptive resistance associated with changes in OxPHOS, electron transport chain complex (ETC) and the TP53 pathway.
Project description:Relapses driven by chemoresistant leukemic cell populations are the main cause of mortality for patients with acute myeloid leukemia (AML). Here, we show that the ectonucleotidase CD39 (ENTPD1) is upregulated in cytarabine (AraC)-resistant leukemic cells from both AML cell lines and patient samples in vivo and in vitro. Similarly, CD39 cell surface expression and activity is increased in AML patients upon chemotherapy compared to diagnosis and enrichment in CD39-expressing blasts is a marker of adverse prognosis in the clinics. High CD39 activity promotes AraC resistance by enhancing mitochondrial activity and biogenesis through activation of a cAMP-mediated response. Finally, genetic and pharmacological inhibition of CD39 eATPase activity blocks the mitochondrial reprogramming triggered by AraC treatment and markedly enhances its cytotoxicity in AML cells in vitro and in vivo. Together, these results reveal CD39 as a new prognostic marker and a promising therapeutic target to improve chemotherapy response in AML.
Project description:BCL6 is a transcription repressor that plays a crucial role in germinal center formation and lymphomagenesis. However, its role in myeloid malignancies remains unclear. Here, we explored the role of BCL6 in acute myeloid leukemia (AML). Heterogeneous levels of BCL6 were found across AML cell lines and primary AML samples. Cells with higher levels of BCL6 were indeed sensitive to treatment with BCL6 inhibitors. Gene expression profiling of AML cells treated with BCL6 inhibitor revealed a subset of target genes that are common with lymphoma cells. Ex vivo treatment of primary AML cells with BCL6 peptide inhibitor (BPI) induced apoptosis and decrease colony forming capacity which correlated with the levels of BCL6 expression . Importantly, inhibition of BCL6 in primary AML cells with either BPI or BCL6 siRNA resulted in significant reduction of leukemia initiating capacity using immunodeficient mice, suggesting ablation of leukemia stem cells (LSC). Such anti-LSC activity was also observed as downregulation of LSC gene signatures using gene expression analyses of cells treated with a BCL6 inhibitor. Importantly, treatment with cytarabine (AraC) induced BCL6 expression, and the levels of BCL6 induction were correlated with resistance to AraC. Treatment of AML primary derived xenografts (PDX) revealed that when AraC was combined with BCL6 inhibitor, inhibition of BCL6 significantly potentiated the efficacy of AraC and improved cytotoxic effects by interfering with the leukemia initiating capacity of AML cells. This suggests that pharmacological inhibition of BCL6 might provide a novel therapeutic strategy for ablation of LSCs and overcome chemoresistance in AML.
Project description:Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm resulting from the malignant transformation of myeloid progenitors. Despite intensive chemotherapy leading to initial treatment responses, relapse caused by intrinsic or acquired drug resistance represents a major challenge. Here, we report that histone 3 lysine 27 demethylase KDM6A (UTX) is targeted by inactivating mutations and mutation-independent regulation in relapsed AML. Analyses of matched diagnosis and relapse specimens from individuals with KDM6A mutations showed an outgrowth of the KDM6A mutated tumor population at relapse. KDM6A-null myeloid leukemia cells were more resistant to treatment with the chemotherapeutic agents cytarabine (AraC) and daunorubicin. Inducible re-expression of KDM6A in KDM6A-null cell lines suppressed proliferation and sensitized cells again to AraC treatment. RNA expression analysis and functional studies revealed that resistance to AraC was conferred by downregulation of the nucleoside membrane transporter ENT1 (SLC29A1). Our results show that loss of KDM6A provides cells with a selective advantage during chemotherapy, which ultimately leads to the observed outgrowth of clones with KDM6A mutations or reduced KDM6A expression at relapse.
Project description:Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm resulting from the malignant transformation of myeloid progenitors. Despite intensive chemotherapy leading to initial treatment responses, relapse caused by intrinsic or acquired drug resistance represents a major challenge. Here, we report that histone 3 lysine 27 demethylase KDM6A (UTX) is targeted by inactivating mutations and mutation-independent regulation in relapsed AML. Analyses of matched diagnosis and relapse specimens from individuals with KDM6A mutations showed an outgrowth of the KDM6A mutated tumor population at relapse. KDM6A-null myeloid leukemia cells were more resistant to treatment with the chemotherapeutic agents cytarabine (AraC) and daunorubicin. Inducible re-expression of KDM6A in KDM6A-null cell lines suppressed proliferation and sensitized cells again to AraC treatment. RNA expression analysis and functional studies revealed that resistance to AraC was conferred by downregulation of the nucleoside membrane transporter ENT1 (SLC29A1). Our results show that loss of KDM6A provides cells with a selective advantage during chemotherapy, which ultimately leads to the observed outgrowth of clones with KDM6A mutations or reduced KDM6A expression at relapse.
Project description:Acute myeloid leukemia (AML) is an aggressive malignancy of hematopoietic cells. Despite recent approvals of targeted drugs, chemotherapy with cytosine arabinoside (araC) and an anthracycline like daunorubicin remains an important pillar of treatment. In a previous work, we have shown that MTSS1 is down-regulated at relapse compared to diagnosis of AML and its down-regulation was previously implicated in aggressiveness of solid tumors. Our results showed that MTSS1 expression was regulated by methylation and reduced by araC and daunorubicin. Experimental down-regulation rendered human AML cell lines more resistant to araC, daunorubicin, and eight additional drugs. In contrast, venetoclax, a BCL2 inhibitor, was more effective towards cells with low MTSS1 expression. A CRISPR/Cas9-mediated knock-out of the MTSS1 gene was used to generate insight into the molecular changes induced by the down-regulation of MTSS1. The knock-out led to the deregulation of > 900 genes which included numerous target genes of transcription factors with a confirmed role in hematopoiesis and AML. A gene ontology analysis of the differentially expressed genes revealed that genes linked to transcription, cell cycle, and immune response were strongly affect. In summary, down-regulation of MTSS1 is associated with primary and secondary chemotherapy resistance in AML. In experimental models, it confers refractoriness to several cytotoxic drugs, yet sensitizes cells to venetoclax, pointing towards ways to overcome therapy resistance in MTSS1low AML.
Project description:Treatment for acute myeloid leukemia (AML) remains suboptimal and many patients remain refractory or relapse upon standard chemotherapy based on nucleoside analogs plus anthracyclines. The crosstalk between AML cells and the bone marrow (BM) stroma is a major mechanism underlying therapy resistance in AML. Lenalidomide and pomalidomide, a new generation immunomodulatory drugs (IMiDs), possess pleiotropic anti-leukemic properties including potent immune-modulating effects and are commonly used in hematological malignances associated with intrinsic dysfunctional BM such as myelodysplastic syndromes and multiple myeloma. Whether IMiDs may improve the efficacy of current standard treatment in AML remains understudied. Here, we have exploited in vitro and in vivo preclinical AML models to analyze whether IMiDs potentiate the efficacy of AraC/Iradubicin (standard AML chemotherapy) by interfering with the BM stroma-mediated chemoresistance. We report that lenalidomide and pomalidomide have cytotoxic effects on neither AML cells nor BM-MSCs, but they increase the immunosuppressive/immunomodulatory properties of BM-MSCs. When combined with AraC and Idarubicin, IMiDs fail to circumvent BM stroma-mediated resistance of AML cells in vitro and in vivo but induce robust extramedullary mobilization of AML cells. When administered as a single agent, lenalidomide highly mobilizes AML cells, but not healthy CD34+ cells, to peripheral blood (PB) likely through specific downregulation of CXCR4 in AML blasts. Global gene expression profiling supports a migratory/mobilization gene signature in lenalidomide-treated AML blasts but not in CD34+ cells. Collectively, IMiDs mobilize AML blasts to PB through downregulation of CXCR4 but do not improve AraC/Idarubicin activity in a preclinical model of AML.