Effect of a dual specificity PI3K/mTOR inhibitor, NVP-BEZ235, on human ovarian cancer cell lines grown in 3D culture
Ontology highlight
ABSTRACT: Analysis of the effects of a dual specificity PI3K/mTOR inhibitor on two human ovarian cell lines, OV2008 and MCAS. Results provide insight into the adaptive response to PI3K/mTOR inhibition in matrix attached ovarian cancer cells. The PI3K/mTOR-pathway is the most commonly deregulated pathway in epithelial cancers and thus represents an important target for cancer therapeutics. Here we show that dual inhibition of PI3K/mTOR in ovarian cancer 3D-spheroids leads to death of the inner matrix-deprived cells, whereas matrix-attached cells are resistant. Resistance is associated with up-regulation of a cellular survival program that involves both FOXO-regulated transcription and a novel translational resistance mechanism resulting in specific up-regulation of IRES-mediated, cap-independent translation. Inhibition of any of several up-regulated proteins, including Bcl-2, EGFR, or IGF1R, abrogates resistance to dual PI3K/mTOR inhibition. These results demonstrate that acute adaptive response to PI3K/mTOR inhibition resembles well-conserved adaptive response to nutrient and growth factor deprivation and how development of rational drug combinations can bypass resistance mechanisms.
ORGANISM(S): Homo sapiens
PROVIDER: GSE28992 | GEO | 2012/03/13
SECONDARY ACCESSION(S): PRJNA140511
REPOSITORIES: GEO
ACCESS DATA