Project description:We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast and identify four structural groups in the nucleosome that influence lifespan. We also identify residues where substitution with an epigenetic mimic extends lifespan, providing evidence that a simple epigenetic switch, without possible additional background modifications, causes longevity. Residues where substitution result in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that have a more modest effect on lifespan extension are concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues that reduce lifespan are buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the nucleosome disk face and that cause lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1, Abf1 or Reb1 binding sites, whereas H3E50 does not. The redistribution of Sir3 in the genome can be reproduced by an equilibrium model based on primary and secondary binding sites with different affinities for Sir3. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that the different groups of residues are involved in binding to heterochromatin proteins, in destabilizing the association of the nucleosome DNA, disrupting binding of the H3-H4 dimer in the nucleosome, or disrupting the structural stability of the octamer, each category impacting on chronological lifespan by a different mechanism.
Project description:We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast. Residues where substitution resulted in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that had a more modest effect on lifespan extension were concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues implicated in a reduced lifespan were buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the disk and that caused lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1 or Abf1 binding sites, whereas H3E50 does not. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that different clusters of H3 and H4 residues are involved in either binding to non-histone proteins, or in destabilizing the association of the nucleosome DNA, or disrupting binding of a H3-H4 dimer in the nucleosome, or disturbing the structural stability of the octamer, each category impacting on chronological lifespan through a different path.
Project description:The biological significance of recently described modifiable residues in the globular core of the bovine nucleosome remains elusive. We have mapped these modification sites onto the Saccharomyces cerevisiae histones and used a genetic approach to probe their potential roles both in heterochromatic regions of the genome and in the DNA repair response. By mutating these residues to mimic their modified and unmodified states, we have generated a total of 39 alleles affecting 14 residues in histones H3 and H4. Remarkably, despite the apparent evolutionary pressure to conserve these near-invariant histone amino acid sequences, the vast majority of mutant alleles are viable. However, a subset of these variant proteins elicit an effect on transcriptional silencing both at the ribosomal DNA locus and at telomeres, suggesting that posttranslational modification(s) at these sites regulates formation and/or maintenance of heterochromatin. Furthermore, we provide direct mass spectrometry evidence for the existence of histone H3 K56 acetylation in yeast. We also show that substitutions at histone H4 K91, K59, S47, and R92 and histone H3 K56 and K115 lead to hypersensitivity to DNA-damaging agents, linking the significance of the chemical identity of these modifiable residues to DNA metabolism. Finally, we allude to the possible molecular mechanisms underlying the effects of these modifications.
Project description:We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast. Residues where substitution resulted in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that had a more modest effect on lifespan extension were concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues implicated in a reduced lifespan were buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the disk and that caused lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1 or Abf1 binding sites, whereas H3E50 does not. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that different clusters of H3 and H4 residues are involved in either binding to non-histone proteins, or in destabilizing the association of the nucleosome DNA, or disrupting binding of a H3-H4 dimer in the nucleosome, or disturbing the structural stability of the octamer, each category impacting on chronological lifespan through a different path.
Project description:We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast. Residues where substitution resulted in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that had a more modest effect on lifespan extension were concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues implicated in a reduced lifespan were buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the disk and that caused lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1 or Abf1 binding sites, whereas H3E50 does not. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that different clusters of H3 and H4 residues are involved in either binding to non-histone proteins, or in destabilizing the association of the nucleosome DNA, or disrupting binding of a H3-H4 dimer in the nucleosome, or disturbing the structural stability of the octamer, each category impacting on chronological lifespan through a different path.
Project description:We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast. Residues where substitution resulted in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that had a more modest effect on lifespan extension were concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues implicated in a reduced lifespan were buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the disk and that caused lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1 or Abf1 binding sites, whereas H3E50 does not. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that different clusters of H3 and H4 residues are involved in either binding to non-histone proteins, or in destabilizing the association of the nucleosome DNA, or disrupting binding of a H3-H4 dimer in the nucleosome, or disturbing the structural stability of the octamer, each category impacting on chronological lifespan through a different path.
Project description:Set2-mediated H3 Lys(36) methylation is a histone modification that has been demonstrated to function in transcriptional elongation by recruiting the Rpd3S histone deacetylase complex to repress intragenic cryptic transcription. Recently, we identified a trans-histone pathway in which the interaction between the N terminus of Set2 and histone H4 Lys(44) is needed to mediate trans-histone H3 Lys(36) di- and trimethylation. In the current study, we demonstrate that mutation of the lysine 44 residue in histone H4 or the Set2 mutant lacking the histone H4 interaction motif leads to intragenic cryptic transcripts, indicating that the Set2 and histone H4 interaction is important to repress intragenic cryptic transcription. We also determine that histone H2A residues (Leu(116) and Leu(117)), which are in close proximity to histone H4 Lys(44), are needed for proper trans-histone H3 Lys(36) methylation. Similar to H4 Lys(44) mutants, histone H2A Leu(116) and Leu(117) mutations exhibited decreased H3 Lys(36) di- and trimethylation, increased histone H4 acetylation, increased resistance to 6-azauracil, and cryptic transcription. Interestingly, the combined histone H4 Lys(44) and H2A mutations have more severe methylation defects and increased H4 acetylation levels. Furthermore, we identify that additional histone H2A and H3 core residues are also needed for H3 Lys(36) di- and trimethylation. Overall, our results show and suggest that multiple H4, H2A, and H3 residues contribute to and form a Set2 docking/recognition site on the nucleosomal surface so that proper Set2-mediated H3 Lys(36) di- and trimethylation, histone acetylation, and transcriptional elongation can occur.