Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: insights from an adverse outcome pathway framework [IL1-R1_KO]
Ontology highlight
ABSTRACT: Five-to-seven week old female wild type C57BL/6 mice (WT) and C57BL/6 mice deficient in IL1-R1 (IL1-R1 KO) were exposed to Mitsui-7, a type of multiwalled nanotube at a dose of 162 µg/mouse by intratracheal administration. Inflammation was assessed 24 h and 28 days following treatment and fibrotic leison was assessed 28 days following treatment. Inflammation was lower in IL1-RI KO mice compared to that observed in the wild type mice at 24h post exposure. This diffrence was no longer observed at 28 days post-exposure. In contrast, STAT6 KO mice showed suppressed inflammation and fibrotic leison at 28 days post-exposure compared to the wild type mice. The results from this study suggest that STAT 6 signaling pathway is essential for multiwalled nanotube induced fibrotic desease.
Project description:Five-to-seven week old female wild type C57BL/6 mice (WT) and C57BL/6 mice deficient in STAT6 (STAT6 KO) were exposed to Mitsui-7, a type of multiwalled nanotube at a dose of 162 µg/mouse by intratracheal administration. Inflammation was assessed 24 h and 28 days following treatment and fibrotic leison was assessed 28 days following treatment. Inflammation was lower in IL1-RI KO mice compared to that observed in the wild type mice at 24h post exposure. This diffrence was no longer observed at 28 days post-exposure. In contrast, STAT6 KO mice showed suppressed inflammation and fibrotic leison at 28 days post-exposure compared to the wild type mice. The results from this study suggest that STAT 6 signaling pathway is essential for inducing fibrotic desease by multiwalled nanotube.
Project description:Mice were aspirated with multiwalled carbon nanotubes in four doses ranging from 10 µg to 80 µg, plus control, and sacrificed after 1, 7, 28, and 56 days. RNA was extracted from the lungs and expression profilling by microarray was performed. This is a reference design two-color experiment. Each array was hybridized with RNA extracted from mouse lung labeled with Cy3, and universal reference RNA labeled with Cy5. Five different doses (0, 10ug, 20ug, 40ug, and 80ug) of multiwalled carbon nanotube aspiration were used and mice were sacrificed after 1, 7, 28, and 56 days. Eight replicates were used at each time/dose condition for a total of 160 arrays.
Project description:Mice were aspirated with multiwalled carbon nanotubes in four doses ranging from 10 µg to 80 µg, plus control, and sacrificed after 1, 7, 28, and 56 days. RNA was extracted from the lungs and expression profilling by microarray was performed.
Project description:Adverse lung effects in rodents following pulmonary exposure to multi-walled carbon nanotubes (MWCNT) are well documented. However, systemic effects are less understood. Prospective epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNT might pose similar risks. We used high-content genomics tools to compare hepatic responses after exposure to a short, entangled MWCNT to the hepatic responses after exposure to a long, stiffer MWCNT at the global transcriptomic level. Female C57BL/6 mice were exposed by single intratracheal instillation to 162 M-BM-5g/mouse of a short MWCNT (NRCWE-26 (NC-7000), 847M-BM-1102 nm in length) or long MWCNT (NM-401 (CP-0006-SG), 4048M-BM-1366 nm in length). Liver tissues were harvested 24 h, 3 d and 28 d after exposure. This experiment examined the pulmonary transcriptional response of female C57BL/6 mice exposed to NRCWE-26, a short multi-walled carbon nanotube, and NM-401, a long multi-walled carbon nanotube, at three doses: D1 (18 M-NM-<g), D2 (54 M-NM-<g), D3 (162 M-NM-<g), and vehicle control. Each dose group was examined 1, 3 or 28 days post-exposure. Each dose group had 6 biological replicates. There were a total of 72 samples included in the final analysis using a two-color reference design.
Project description:Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study.
Project description:Multi-walled carbon nanotubes (MWCNTs) are extensively produced and used in composite materials and electronic applications, thus increasing risk of worker and consumer exposure. MWCNTs are an inhomogeneous group of nanomaterials that exist in various lengths, shapes and with different metal compositions, which makes hazard evaluation difficult. However, several studies suggest that length plays an important role in the toxicity induced by MWCNTs. How the length influences toxicity at the molecular level is yet to be characterized. We used high-content genomics tools to compare pulmonary responses after exposure to a short, entangled MWCNT to the pulmonary responses after exposure to a long, stiffer MWCNT at the global transcriptomic level. Female C57BL/6 mice were exposed by single intratracheal instillation to 18, 54 or 162 M-BM-5g/mouse of a short MWCNT (NRCWE-26 (NC-7000), 847M-BM-1102 nm in length) or long MWCNT (NM-401 (CP-0006-SG), 4048M-BM-1366 nm in length). Lung tissues were harvested 24 h, 3 d and 28 d after exposure. This experiment examined the pulmonary transcriptional response of female C57BL/6 mice exposed to NRCWE-26, a short multi-walled carbon nanotube, and NM-401, a long multi-walled carbon nanotube, at three doses: D1 (18 M-NM-<g), D2 (54 M-NM-<g), D3 (162 M-NM-<g), and vehicle control. Each dose group was examined 1, 3 or 28 days post-exposure. Each dose group had 5-6 biological replicates. There were a total of 139 samples included in the final analysis using a two-color reference design.
Project description:Pulmonary exposure to multiwalled carbon nanotubes (MWCNT) induces an inflammatory and rapid fibrotic response, although the long-term signaling mechanisms are unknown. The aim of this study was to perform genome-wide mRNA profiling in mice blood to identify non-invasive blood based biomarkers for medical and occupational surveillance. The pathological results in this 1-year MWCNT post-exposure study was previously published in Snyder-Talkington et al. J Toxicol Environ Health A. 2016;79(8):352-66. doi: 10.1080/15287394.2016.1159635. Epub 2016 Apr 19. PMID: 27092743
Project description:Recent in vivo studies reported that inhaled carbon nanotube distribute in the alveolar region resulting in an acute inflammation, progressive fibrotic response and particle accumulation at the bronchoalveolar junction with low clearance. With similar biopersistence and shape as asbestos, a known lung carcinogen, growing concern has arisen for elevated risk of carbon nanotube-induced lung carcinogenesis; however few studies have evaluated long-term human health risks associated with chronic pulmonary carbon nanotube exposures compared to asbestos. To address this knowledge gap, we conducted subchronic in vitro exposures of dispersed single walled carbon nanotube, multi-walled carbon nanotube and crocidolite asbestos to human small airway epithelial cells to assess their neoplastic transformation potential. Subchronic single-, multi-walled carbon nanotube and asbestos exposures caused human lung cell neoplastic transformation exhibited by increased proliferation, anchorage-independent growth, invasion and angiogenesis. Whole genome profiling and protein expression analyses showed that carbon nanotube-induced transformation mechanism(s) was largely different from asbestos-related inflammatory signaling, suggesting specific carbon nanotube-induced carcinogenic potential. This study provides novel carbon nanotube and asbestos toxicogenomic information for risk assessment and an in vitro model to evaluate transformation potential of carbon nanotubes and other nanoparticles. Whole genome expression profiling was conducted on human immortalized small airway epithelial cells (SAEC-hTERT) following 6 month in vitro chronic exposure to six separate treatments to assess differences in carbon nanotube (CNT) vs. asbestos potential tumorigenesis signaling. Dispersed single wall CNT (D-SWCNT), multi-wall CNT (D-MWCNT), ultrafine carbon black (D-UFCB), crocidolite asbestos (ASB) and saline (SAL) exposed cells were compared to SurvantaM-BM-. dispersant (DISP) passage control cells. Each treatment possessed 3 biological cDNA replicates. One technical replicate was performed per biological sample.
Project description:Recent in vivo studies reported that inhaled carbon nanotube distribute in the alveolar region resulting in an acute inflammation, progressive fibrotic response and particle accumulation at the bronchoalveolar junction with low clearance. With similar biopersistence and shape as asbestos, a known lung carcinogen, growing concern has arisen for elevated risk of carbon nanotube-induced lung carcinogenesis; however few studies have evaluated long-term human health risks associated with chronic pulmonary carbon nanotube exposures compared to asbestos. To address this knowledge gap, we conducted subchronic in vitro exposures of dispersed single walled carbon nanotube, multi-walled carbon nanotube and crocidolite asbestos to human small airway epithelial cells to assess their neoplastic transformation potential. Subchronic single-, multi-walled carbon nanotube and asbestos exposures caused human lung cell neoplastic transformation exhibited by increased proliferation, anchorage-independent growth, invasion and angiogenesis. Whole genome profiling and protein expression analyses showed that carbon nanotube-induced transformation mechanism(s) was largely different from asbestos-related inflammatory signaling, suggesting specific carbon nanotube-induced carcinogenic potential. This study provides novel carbon nanotube and asbestos toxicogenomic information for risk assessment and an in vitro model to evaluate transformation potential of carbon nanotubes and other nanoparticles.