Project description:We report the chromatin maps of CD4+ and CD8+ T cells Examination of 2 different histone modifications different T cell populations
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of SNF5 binding in human pluripotent embryonic carcinoma NCCIT and SNF5 overexpressed NCCIT cells. We generated genome-wide cSNF5 maps of NCCIT and SNF5 overexpressed NCCIT cells from chromatin immunoprecipitated DNA. SNF5 and OCT4 seem not to share their binding in OCT4 centered binding plot in control, while SNF5 overexpression directs SNF5 to OCT4 target genes. Examination of the relationship between SNF5 and OCT4 binding in control and SNF5 overexpressed cells.
Project description:Genome-wide maps of chromatin state (H3K4me3, H3K9me3, H3K27me3, H3K36me3, H4K20me3) in pluripotent and lineage-committed cells We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells. By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts. We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential. Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation. Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences. Lysine 4 and lysine 9 trimethylation marks imprinting control regions. Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms. This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations. Histone H3 or H4 tri-methylation ChIP-Seq in singlicate from murine embryonic stem (ES) cells, ES-derived neural precursor cells, and embryonic fibroblasts.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone H3 trimethylation in rice endosperm. By obtaining about four hundred million bases of sequence from rice chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of rice endosperm. We find that the presence of H3K27me3 in either upstream or downstream of a gene is predominately associated with repression of the gene, while its absence is mainly associated with high gene expression. Examination of Histone H3 lysine 27 trimethylation in rice endosperm.
Project description:We mapped genome-wide Tcf1 binding locations in mature CD8 T cells to identify its direct target genes. This experiment aims to identify genome-wide binding locations for Tcf1 transcription factor in mature CD8 T cells. The CD8 T cells were isolated from wild-type C57BL/6 mice by negative selection. The chromatin fragments were immunoprecipitated by an anti-Tcf1 antiserum or control rabbit serum (without immunization). The immunoprecipitated fragments were then used in high throughput sequencing. Data processing then revealed >3000 high-confidence Tcf1 binding peaks across the CD8 T cell genome. One important finding is that Tcf1 binds directly to Cd4 gene silencer, and thus explain its important role in suppressing the CD4 coreceptor in mature CD8 T cells.
Project description:We generated genome-wide chromatin state and RNA Polymerase II binding maps in mouse erythroid cells by ChIP-Seq. Examination of 4 different histone modifications (H3K4me3, H3K4me1, H3K27me3, H3K27ac) and RNA Polymerase II (RNAP2) binding in mouse erythroid cells (Ter119+).
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in yeast. By obtaining bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of saccharomuces cerevisiae.We find that H3T11 phosphorylationlysine is widely distributed in gene promoter region and chromosome telomere region