Project description:This SuperSeries is composed of the following subset Series: GSE30734: Genome-wide binding map of the HIV Tat protein to the human genome (gene expression) GSE30736: Genome-wide binding map of the HIV Tat protein to the human genome (ChIP-chip) GSE30738: Genome-wide binding map of the HIV Tat protein to the human genome (ChIP-Seq) Refer to individual Series
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. While Tat's control of viral transcription is well-studied, much less is known about the interaction of Tat with the human genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells using chromatin immunoprecipitation combined with next-generation sequencing. Surprisingly, we found that ~53% of the Tat target regions are within DNA repeat elements, greater than half of which are Alu sequences. The remaining target regions are located in introns and distal intergenic regions; only ~7% of Tat-bound regions are near transcription start sites (TSS) at gene promoters. Interestingly, Tat binds to promoters of genes that, in Jurkat cells, are bound by the ETS1 transcription factor, the CBP histone acetyltransferase and/or are enriched for histone H3 lysine 4 tri-methylation (H3K4me3) and H3K27me3. Tat binding is associated with genes enriched with functions in T cell biology and immune response. Our data reveal that Tat's interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle.
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that Tat’s interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle. Agilent gene expression microarray was used to compare gene expression changes between Jurkat T cells and Jurkat T cells expressing HIV-Tat protein (Jurkat-Tat T cells)
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that Tatâs interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle.
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that Tat’s interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle.
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that Tat’s interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle. Agilent gene expression microarray was used to compare gene expression changes between Jurkat T cells and Jurkat T cells expressing HIV-Tat protein (Jurkat-Tat T cells) Expression profiles on Jurkat-Tat cells versus Jurkat cells. ChIP on chip for H3K9ac in Jurkat-Tat versus Jurkat cells. ChIP-seq for HIV-1 Tat protein in Jurkat-Tat cells.
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that TatM-CM-"M-BM-^@M-BM-^Ys interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle. Expression profiles on Jurkat-Tat cells versus Jurkat cells. ChIP on chip for H3K9ac in Jurkat-Tat versus Jurkat cells. ChIP-seq for HIV-1 Tat protein in Jurkat-Tat cells.
Project description:The HIV-1 Trans-Activator of Transcription (Tat) protein binds to multiple host cellular factors and greatly enhances the level of transcription of the HIV genome. Here, we report the genome-wide binding map of Tat to the human genome in Jurkat T cells (Jurkat-Tat cells) using chromatin immunoprecipitation combined with next-generation sequencing. cDNA microarray was used to monitor gene expression changes between Jurkat and Jurkat-Tat cells. Additionally, we compared distribution of H3K9ac near gene promoters between Jurkat and Jurkat-Tat cells using ChIP-chip method and hybridized onto Agilent promoter array. Our data reveal that Tat’s interaction with the host genome is more extensive than previously thought, with potentially important implications for the viral life cycle. Expression profiles on Jurkat-Tat cells versus Jurkat cells. ChIP on chip for H3K9ac in Jurkat-Tat versus Jurkat cells. ChIP-seq for HIV-1 Tat protein in Jurkat-Tat cells.