Project description:This SuperSeries is composed of the following subset Series: GSE30686: Gene expression analysis of Kc cells from Drosophila melanogaster during ecdysone treatment and CP190 knockdown GSE30740: Distribution of Drosophila insulator proteins after ecdysone treatment in Kc cells Refer to individual Series
Project description:This study examines the changes in genes expression that occur in Drosophila melanogaster during the ecdysone response as well as during RNAi knockdown of the insulator protein, CP190. Analysis was performed in Kc cells after 0, 3, and 48 hours of ecdysone treatment in the presence of either control or CP190 knockdown.
Project description:This study examines the changes in genes expression that occur in Drosophila melanogaster during the ecdysone response as well as during RNAi knockdown of the insulator protein, CP190. Analysis was performed in Kc cells after 0, 3, and 48 hours of ecdysone treatment in the presence of either control or CP190 knockdown. Six conditions were analyzed, and each condition was performed for 2 biological replicates making a total of 12 chips. Each chip measures the expression level of 16,637 genes from D.melanogaster with eight, 60-mer probes per gene.
Project description:Most of the known Drosophila architectural proteins interact with an important cofactor, CP190, that contains three domains (BTB, M, and D) that are involved in protein-protein interactions. The highly conserved N-terminal CP190 BTB domain forms a stable homodimer that interacts with unstructured regions in the three best-characterized architectural proteins: dCTCF, Su(Hw), and Pita. Here, we identified two new CP190 partners, CG4730 and CG31365, that interact with the BTB domain. The CP190 BTB resembles the previously characterized human BCL6 BTB domain, which uses its hydrophobic groove to specifically associate with unstructured regions of several transcriptional repressors. Using GST pull-down and yeast two-hybrid assays, we demonstrated that mutations in the hydrophobic groove strongly affect the affinity of CP190 BTB for the architectural proteins. In the yeast two-hybrid assay, we found that architectural proteins use various mechanisms to improve the efficiency of interaction with CP190. Pita and Su(Hw) have two unstructured regions that appear to simultaneously interact with hydrophobic grooves in the BTB dimer. In dCTCF and CG31365, two adjacent regions interact simultaneously with the hydrophobic groove of the BTB and the M domain of CP190. Finally, CG4730 interacts with the BTB, M, and D domains of CP190 simultaneously. These results suggest that architectural proteins use different mechanisms to increase the efficiency of interaction with CP190.
Project description:Here we examine changes in the distribution of Drosophila insulator proteins during the ecdysone response. We performed ChIP-seq analysis in Kc cells at 0, 3, and 48 hours of ecdysone treatment with antibodies against CP190, Su(Hw), dCTCF, and BEAF-32B.
Project description:Here we examine changes in the distribution of Drosophila insulator proteins during the ecdysone response. We performed ChIP-seq analysis in Kc cells at 0, 3, and 48 hours of ecdysone treatment with antibodies against CP190, Su(Hw), dCTCF, and BEAF-32B. Examination of 4 different insulator proteins at 3 time points of ecdysone treatment.
Project description:Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Project description:Improved survival is likely linked to the ability to generate stable memories of significant experiences. Considerable evidence in humans and mammalian model animals shows that steroid hormones, which are released in response to emotionally arousing experiences, have an important role in the consolidation of memories of such events. In insects, ecdysone is the major steroid hormone, and it is well characterized with respect to its essential role in coordinating developmental transitions such as larval molting and metamorphosis. However, the functions of ecdysone in adult physiology remain largely elusive. Here, we show that 20-hydroxyecdysone (20E), the active metabolite of ecdysone that is induced by environmental stimuli in adult Drosophila, has an important role in the formation of long-term memory (LTM). In male flies, the levels of 20E were found to be significantly increased after courtship conditioning, and exogenous administration of 20E either enhanced or suppressed courtship LTM, depending on the timing of its administration. We also found that mutants in which ecdysone signaling is reduced were defective in LTM, and that an elevation of 20E levels was associated with activation of the cAMP response element binding protein (CREB), an essential regulator of LTM formation. Our results demonstrate that the molting steroid hormone ecdysone in adult Drosophila is critical to the evolutionarily conserved strategy that is used for the formation of stable memories. We propose that ecdysone is able to consolidate memories possibly by recapturing molecular and cellular processes that are used for normal neural development.
Project description:The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4) is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC), the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH), an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.