Microarray analysis reveals novel regulatory genes associated with the non-aflatoxigenic Aspergillus parasiticus mutants obtained by 5-azacytosine treatment or serial mycelial transfer
Ontology highlight
ABSTRACT: Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced mutants with a fluffy phenotype and loss of aflatoxin production. To understand how these treatments affect aflatoxin production and development, we carried out expressed sequence tag (EST)-based microarray assays to identify differentially expressed genes in clones obtained from these treatments. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to be membrane-bound. Dysregulation of some of these may be responsible for the fluffy phenotype. Of the aflatoxin biosynthesis pathway genes only aflJ (aflS) was significantly affected by either treatment. A gene for a protein homologous to a key regulator of secondary metabolite biosynthesis (LaeA) was one of the upregulated genes and possibly could affect the activity of LaeA. Other genes known to be required for fungal developmental or aflatoxin production were not affected by the treatments. Consistent with the fluffy phenotype and the non-aflatoxigenicity of the clones obtained by either treatment, we hypothesize that the mutations cause improper development of conidiophores and specialized biosynthesis vacuoles (aflatoxisomes) needed for AF production.
ORGANISM(S): Aspergillus parasiticus Aspergillus flavus
PROVIDER: GSE30756 | GEO | 2011/12/31
SECONDARY ACCESSION(S): PRJNA144111
REPOSITORIES: GEO
ACCESS DATA