SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers
Ontology highlight
ABSTRACT: Metazoan SAGA and ATAC are distinct multi-subunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a new class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a novel role for the ATAC complex in the regulation of a set of enhancers.
Project description:Metazoan SAGA and ATAC are distinct multi-subunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a new class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a novel role for the ATAC complex in the regulation of a set of enhancers. Examination of SPT20 in two different cell types.
Project description:SAGA and ATAC are two related transcriptional coactivator complexes, sharing the same histone acetyltransferase (HAT) subunit. The HAT activities of SAGA and ATAC are required for metazoan development but the precise role of the two complexes in RNA polymerase II transcription in mammals is less understood. To determine whether SAGA and ATAC have redundant or specific functions dependent on their HAT activities, we compared the effects of HAT inactivation in each complex with that of inactivation of either SAGA or ATAC core subunits in mouse embryonic stem cells (ESCs). We show that core subunits of SAGA or ATAC subunits are required for complex assembly, mouse ESC growth and self-renewal. Additionally, ATAC, but not SAGA subunits are required for ESC viability by regulating the transcription of translation-related genes. Surprisingly, depletion of specific or shared HAT module subunits caused a global decrease in histone H3K9 acetylation, but did not result in significant phenotypic or transcriptional defects. Thus, our results indicate that SAGA and ATAC are differentially required for viability and self-renewal of mouse ESCs by regulating transcription through different pathways, in a HAT-independent manner.
Project description:To understand the precise mechanism that guide the formation of multisubunit complexes is of key importance. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here we demonstrate that the distinct modules of ATAC (ADA Two A Containing) and SAGA (SPT ADA GCN5 Acetyltransferase), two lysine acetyl transferase-containing transcription coactivator complexes, assemble co-translationally in the cytoplasm of mammalian cells. Fully assembled SAGA complex forms in the cytoplasm of mammalian cells and cytoplasmic SAGA acetylates non-histones proteins, before imported in the nucleus. In contrast, ATAC has no cytoplasmic functions as it cannot be detected in the cytoplasm of mammalian cells. However, fully assembled endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related co-activators, ATAC and SAGA, assemble by using co-translational pathways, but their subcellular localization, cytoplasmic detectability and functions are distinct.
Project description:Assess H3K9ac levels in WT and mutant ES E14 strains using ChIP-seq. Mutant strains are depleted for subunits of the coactivator complexes SAGA (Supt7l KO) or ATAC (AID-Yeats2) or of HAT subunits (AID-Tada3, Tada2a+Tada2b KO) using constitutive knock-out (KO) or the auxin-inducible degron (AID) system.
Project description:Assess chromatin accessibility in WT and mutant ES E14 strains using ATAC-seq. Mutant strains are depleted for subunits of the coactivator complexes SAGA (Supt7l KO) or ATAC (Yeats2, Zzz3) using constitutive knock-out (KO) or the auxin-inducible degron (AID) system.
Project description:To analyse the genome-wide impact of inactivation of the ATAC or SAGA coactivator complexes on RNA polymerase II (Pol II) transcription, we purified newly synthesized RNA from mutant mouse embryonic stem (ES) cell lines in which subunits of ATAC (Yeats2, Zzz3) or SAGA (Supt7l) are inactivated or depleted. We also performed this analysis in mutant cell lines in which a subunit (Tada3) of the shared histone acetyltransferase activity of these two complexes is depleted. Newly synthesized RNA was purified following the 4sU labelling method (more details in extract protocol). For two wildtype samples, the total RNA input was also analysed.
Project description:The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8 that interacts with the TATA-binding protein. SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast. In addition, both SAGA and SLIK perform chromatin modifications and the two complexes have been speculated to uniquely contribute to transcription regulation. To test the respective contribution of SAGA vs. SLIK in transcription regulation, we assayed the chromatin modifying functions of SAGA vs. SLIK, revealing identical kinetics on minimal substrates in vitro. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10-17 nM) and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared to SAGA, nor significantly affect HAT, DUB or DNA binding activities in vitro.
Project description:Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.
Project description:Pediatric cancers are frequently driven by fusion or amplification events that result in aberrant transcription factor activity. As transcription factors themselves remain challenging to target, an emerging therapeutic approach for these cancers is to target epigenetic complexes that help maintain oncogenic transcriptional programs. It is therefore critical to identify the complete set of epigenetic modulators maintaining the oncogenic epigenetic landscape of pediatric cancers. Here, we used functional genomic screens to identify epigenetic complexes critical for viability in cell line models of MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We identified multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies in MYCN-amplified neuroblastoma. Integrating ChIP-seq, ATAC-seq, and RNA-seq with targeted protein-degradation and gene editing tools, we characterized the DNA recruitment sites of the SAGA complex in neuroblastoma, and the consequences of SAGA complex lysine acetyltransferase (KAT) activity loss on histone acetylation and gene expression. We demonstrate that loss of SAGA KAT activity suppresses MYC and MYCN gene expression programs and impairs cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable with a KAT2A/KAT2B proteolysis targeting chimera molecule that demonstrated significant activity in vitro and in vivo. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.
Project description:TFIID and SAGA complexes play a critical role in RNA Polymerase II dependent activated transcription. Although the two regulatory complexes are recruited to promoters by activation domain-interactions, the contribution of the different subunits or the different domains of the individual subunits is not completely understood. Taf9 is a shared subunit in TFIID and SAGA and has an N-terminal H3-like histone fold domain and a highly conserved C-terminal domain, Taf9-CTD. In this study, we have uncovered an essential role for the Taf9-CTD in transcriptional activation. The Taf9-CTD was not essential for the histone-fold mediated interaction with Taf6, SAGA and TFIID integrity or Gcn4 interaction with SAGA. Transcriptome profiling performed under Gcn4 activating conditions showed that the Taf9-CTD is required for expression of ~17% of the yeast genome and provides a coactivator function to recruit TFIID and SAGA complexes to the promoters in vivo during transcriptional activation. Integrated genome-wide data analysis showed that the Taf9-CTD is required for activation of promoters bound by several transcription factors indicating a broad role for Taf9-CTD in promoter occupancy of TFIID or SAGA complexes. Interestingly, only a subset of the promoters seemed to be dependent on the Taf9-CTD for assembly of the pre-initiation complex indicating redundancy in activator targets to assemble PIC in vivo. Together these results indicate that evolutionarily conserved domains in shared subunits of TFIID and SAGA have a pervasive role in genome-wide transcription. This GEO series consists of 14 microarray hybridizations using the Agilent two-color experiment with the Agilent Custom Saccharomyces cerevisiae 8x15k gene expression array. Four biological replicates each for the wild-type (TAF9), the mutant taf9-tCRD2 strain treated or untreated with SM, and the wild-type (TAF9) versus mutant taf9-tCRD2 treated with SM hybridized as dye-swapped replicates. Two biological replicates for wild-type (SPT20) vs spt20D strains treated with SM, and hybridized as dye-swapped replicates to identify the fraction of SAGA dependent genes under amino-acid starvation conditions. The overall aim was to identify genes dependent on the conserved C-terminal region domain of TAF9 and determine their dependence on the SAGA subunit Spt20 for expression.