Extinction learning
Ontology highlight
ABSTRACT: Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example the expression of an aversive behavior upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinctionare only beginning to emerge. Here we show that fear extinction initiates up-regulation of hippocampal insulin-growth factor 2 (Igf2) and down-regulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2-signaling during fear extinction. To this end we show that fear extinction-induced IGF2/IGFBP7-signaling promotes the survival of 17-19 day-old newborn hippocampal neurons. In conclusion, our data suggests that therapeutic strategies that enhance IGF2-signaling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory.
ORGANISM(S): Mus musculus
PROVIDER: GSE31063 | GEO | 2011/08/08
SECONDARY ACCESSION(S): PRJNA146217
REPOSITORIES: GEO
ACCESS DATA