Effect of prolonged stretch on transcript profile of human pregnant myometrium
Ontology highlight
ABSTRACT: Context: Increased uterine stretch appears to increase the risk of preterm labour, but the mechanism is unknown. Objectives: To identify a targetable mechanism mediating the effect of stretch on human myometrium. Design: Myometrial explants, prepared from biopsies obtained at elective caesarean delivery, were either studied acutely, or were maintained in prolonged culture (up to 65 h) under tension with either a 0.6 g or 2.4 g mass, and compared using in vitro contractility, whole genome array, and qRT-PCR. Results: Increased stretch for 24 or 65 h increased potassium-induced and oxytocin-induced contractility. Gene array identified 62 differentially expressed transcripts after 65 h exposure to increased stretch. Two probes for gastrin-releasing peptide (GRP), a known stimulatory agonist of smooth muscle, were among the top five up-regulated by stretch (3.4-fold and 2.0-fold). Up-regulation of GRP by stretch was confirmed in a separate series of 10 samples using qRT-PCR (2.8-fold, P = 0.01). GRP stimulated contractions acutely when added to freshly obtained myometrial strips in 3 out of 9 cases, but Western blot demonstrated expression of the GRP receptor in 9 out of 9 cases. Prolonged incubation of stretched explants in the GRP antagonists PD-176252 or RC-3095 (65 and 24 h respectively) significantly reduced potassium chloride and oxytocin-induced contractility. Conclusion: Stretch of human myometrium increases contractility and stimulates the expression of a known smooth muscle stimulatory agonist, GRP. Incubation of myometrium in GRP receptor antagonists ameliorates the effect of stretch. GRP may be a target for novel therapies to reduce the risk of preterm birth in multiple pregnancy.
ORGANISM(S): Homo sapiens
PROVIDER: GSE31329 | GEO | 2012/06/15
SECONDARY ACCESSION(S): PRJNA145997
REPOSITORIES: GEO
ACCESS DATA