Transcriptomics

Dataset Information

0

Ultra short and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution


ABSTRACT: RNA synthesis and decay rates determine the steady-state levels of cellular RNAs. Metabolic tagging of newly transcribed RNA by 4-thiouridine (4sU) can reveal the relative contributions of RNA synthesis and decay rates. The kinetics of RNA processing, however, so far remained unresolved. Here, we show that ultra-short 4sU-tagging not only provides snap-shot pictures of eukaryotic gene expression but, when combined with progressive 4sU-tagging and RNA-seq, reveals global RNA processing kinetics at nucleotide resolution. Using this method, we identified classes of rapidly and slowly spliced/degraded introns. Interestingly, each class of splicing kinetics was characterized by a distinct association with intron length, gene length and splice site strength. For a large group of introns, we also observed long lasting retention in the primary transcript, but efficient secondary splicing or degradation at later time points. Finally, we show that processing of most, but not all small nucleolar (sno)RNA-containing introns is remarkably inefficient with the majority of introns being spliced and degraded rather than processed into mature snoRNAs. In summary, our study yields unparalleled insights into the kinetics of RNA processing and provides the tools to study molecular mechanisms of RNA processing and their contribution to the regulation of gene expression.

ORGANISM(S): Homo sapiens

PROVIDER: GSE31653 | GEO | 2012/04/26

SECONDARY ACCESSION(S): PRJNA145401

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2012-04-25 | E-GEOD-31653 | biostudies-arrayexpress
2014-05-09 | E-GEOD-57116 | biostudies-arrayexpress
2020-11-18 | GSE159993 | GEO
2016-05-17 | E-GEOD-78209 | biostudies-arrayexpress
2015-07-23 | E-GEOD-70481 | biostudies-arrayexpress
2014-02-04 | E-GEOD-48889 | biostudies-arrayexpress
2013-12-07 | E-GEOD-53071 | biostudies-arrayexpress
2023-06-22 | GSE208225 | GEO
2020-03-10 | GSE145097 | GEO
2022-01-08 | GSE163421 | GEO