Project description:The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.
Project description:This SuperSeries is composed of the following subset Series: GSE31525: Spider mite preliminary feeding experiment with mites reared on bean and two Arabidopsis thaliana accessions GSE31527: Developmental stage-specific gene expression in the two-spotted spider mite (Tetranychus urticae) GSE32005: Developmental stage-specific small RNA composition in the two-spotted spider mite (Tetranychus urticae) GSE32009: Transcriptional responses of the two-spotted spider mite (Tetranychus urticae) after transfer to different plant hosts Refer to individual Series
Project description:Tetranychus urticae is a highly polyphagous species with a cosmopolitan distribution that has the status of pest in more than 100 economically significant crops all over the world. Despite a number of previous efforts to isolate genetic markers, only a reduced set of microsatellite loci has been published. Taking advantage of the whole genome sequence of T. urticae that recently became available; we isolated and characterized a new set of microsatellite loci and tested the level of polymorphism across populations originating from a wide geographical area.A total of 42 microsatellite sequences widespread in the T. urticae genome were identified, the exact position in the genome recorded, and PCR amplification of microsatellite loci tested with primers defined here. Fourteen loci showed unambiguous genotype patterns and were further characterized. Three multiplex polymerase chain reaction sets were optimized in order to genotype a total of 24 polymorphic loci, including 10 previously published Tetranychus-specific loci. The microsatellite kits successfully amplified 686 individuals from 60 field populations for which we assessed the level of genetic diversity. The number of alleles per locus ranged from 3 to 16 and the expected heterozygosity values ranged from 0.12 to 0.81. Most of the loci displayed a significant excess of homozygous and did not model the Hardy-Weinberg equilibrium. This can be explained by the arrhenotokous mode of reproduction of T. urticae.These primers represent a valuable resource for robust studies on the genetic structure, dispersal and population biology of T. urticae, that can be used in managing this destructive agricultural pest.