Differential protein expression by Porphyromonas gingivalis in response to secreted epithelial cell components
Ontology highlight
ABSTRACT: The human oral pathogen Porphyromonas gingivalis colonizes the gingival crevice and invades gingival epithelial cells. Multidimensional capillary high-performance liquid chromatography coupled with tandem mass spectrometry and two-dimensional gel electrophoresis were used to analyze the proteome of P. gingivalis as it adapts to a set of experimental conditions designed to reflect important features of an epithelial cell environment. 1014 proteins (46% of the total theoretical proteome) were identified in four independent analyses; 479 of these proteins showed evidence of differential expression after exposure of P. gingivalis to either conditioned epithelial cell growth medium or control conditions: i.e., they were only detected under one set of conditions. Moreover, 276 genes annotated as hypothetical were found to encode expressed proteins. Among the proteins up-regulated in the presence of epithelial cell components were a homolog of the internalin proteins of Listeria monocytogenes and subunits of the ATP-dependent Clp protease complex. Insertional inactivation of clpP, encoding the Clp proteolytic subunit, resulted in approximately a 50% reduction in invasion of P. gingivalis. These results suggest that adaptation to an epithelial cell environment induces a major shift in the expressed proteome of the organism. Furthermore, ClpP, that is up-regulated in this environment, is required for optimal invasive activity of P. gingivalis. Keywords: proteome analysis of P. gingivalis
ORGANISM(S): Porphyromonas gingivalis
PROVIDER: GSE3322 | GEO | 2005/09/17
SECONDARY ACCESSION(S): PRJNA93359
REPOSITORIES: GEO
ACCESS DATA