Expression data from control and COUP-TFII siRNA treated HUVEC cells
Ontology highlight
ABSTRACT: COUP-TFII plays a critical role in angiogenesis during development. It has also been shown to suppress Notch signaling pathway to confer vein identity. However, the downstream targets and the mechanism mediate COUP-TFII function to regulate these processes remain elusive. To identify the downstream targets and the mechanism by which COUP-TFII regulates agiogenesis and vein specification, we knocked down COUP-TFII in HUVEC cells using COUP-TFII specific siRNA and used microarray analysis to identify downstream targets. Interestingly, we found the expression of many genes in the cell cycle pathway and Notch signaling pathway are significantly altered in the COUP-TFII depleted cells.
Project description:COUP-TFII plays a critical role in angiogenesis during development. It has also been shown to suppress Notch signaling pathway to confer vein identity. However, the downstream targets and the mechanism mediate COUP-TFII function to regulate these processes remain elusive. To identify the downstream targets and the mechanism by which COUP-TFII regulates agiogenesis and vein specification, we knocked down COUP-TFII in HUVEC cells using COUP-TFII specific siRNA and used microarray analysis to identify downstream targets. Interestingly, we found the expression of many genes in the cell cycle pathway and Notch signaling pathway are significantly altered in the COUP-TFII depleted cells. HUVEC Cells were transfected with siRNA (Control or COUP-TFII siRNA) duplexes (50 nM) and total RNA was isolated 48 hours later.
Project description:Recent studies demonstrated that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP-TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP-TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP-TFII in mice resulted in attenuation of injury-induced kidney fibrosis. A non-biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP-TFII overexpressing fibroblasts. Overexpression of COUP-TFII in fibroblasts induced augmented glycolysis and production of alpha smooth muscle actin (αSMA) and collagen1. Knockout of COUP-TFII decreased glycolysis and collagen1 levels in fibroblasts. Chip-qPCR revealed the binding of COUP-TFII on the promoter of PGC1α. Overexpression of COUP-TFII reduced the cellular level of PGC1α. Targeting COUP-TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.
Project description:The orphan nuclear receptor COUP-TFII is expressed at a low level in adult tissues, but its expression is increased and shown to promote progression of multiple diseases including prostate cancer, heart failure and muscular dystrophy. Suppression of COUP-TFII slows disease progression, making it an intriguing therapeutic target. Here, we identified a potent and specific COUP-TFII inhibitor through high-throughput screening. The inhibitor specifically suppressed COUP-TFII activity to regulate its target genes.
Project description:COUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis.
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy.
Project description:Elevated COUP-TFII levels are found in Parkinson’s disease. COUP-TFII overexpression in mouse dopaminergic neurons caused neurodegeneration. The goal of this study is to identify molecular mechanisms of COUP-TFII-mediated cell death through RNAseq.
Project description:COUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis. PC3 Cells were transfected with siRNA (Control or COUP-TFII siRNA) duplexes (40 nM) and total RNA was isolated 48 hours later.
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy. We utilized a previously established CAG-S-COUP-TFII allele and crossed it with the Myh6-MerCreMer (Myh6-MCM) line to overexpress COUP-TFII specifically in cardiomyocytes at two months of age by administration of tamoxifen. The experimental group has genotype of Myh6-MCM; CAG-S-COUP-TFII while the control group consists of Myh6-MCM mice (Figure 1C). Whole ventricles were harvested 16 days post induction for molecular profiling.
Project description:In an XX embryo, the Wolffian duct regresses under the control of the mesenchymal transcription factor COUP-TFII. To understand cellular and molecular actions underlying Wolffian duct regression, we preformed transcriptomic analyses of XX mesonephroi with or without Coup-tfII and genome-wide analysis of COUP-TFII chromatin occupancy in XX mesonephroi. The integrative analysis of COUP-TFII genome-wide binding and transcriptomic analysis revealed the suppression of muscle differentiation and extracellular matrix genes by COUP-TFII and identified a group of COUP-TFII’s potential transcriptional partners in the mesenchyme that potentially facilitate Wolffian duct regression. These findings provide insights into the molecular action of COUP-TFII in the Wolffian duct mesenchyme and identify a list of biologically relevant candidate genes and pathways for future functional analyses in sexual differentiation of reproductive tracts.
Project description:In males, Leydig cells are the main producers of testosterone and insulin-like 3, hormones which are both essential for sex differentiation and reproductive functions. Nuclear receptor chicken ovalbumin upstream promoter-transcription factors II (COUP-TFII) is expressed in the cells committed to give rise to the fully functional steroidogenic adult Leydig cells and has a major role in their function and differentiation. Up to date, only handful of COUP-TFII gene targets have been reported. A transcriptomic approach was used to identify additional genes affected by depletion of COUP-TFII in mouse MA-10 Leydig cell line.